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INTRODUCTION.

TrE idea of this book was suggested to me by Kinder-
garten Gift No. VIII.—Paper-folding. The gift consists
of 200 variously coloured squares of paper, a folder, and
diagrams and instructions for folding. The paper is
coloured and glazed on one side. The paper may, how-
ever, be of self-colour, alike on both sides. In fact, any
paper of moderate thickness will answer the purpose, but
coloured paper shows the creases better, and is more
attractive. The kindergarten gift is sold by Messrs.
Higginbotham and Co.; but coloured paper of both sorts
can be had in the bazaars. A packet of 100 squares of both
sorts accompanies this book, and the packets can also be
had separately. Any sheet of paper can be cut into a
square as explained in the opening articles of this book, but
it is neat and convenient to have the squares ready cut.

2. These exercises do not require mathematical instru-
ments, the only things necessary being a penknife and
scraps of paper, the latter being used for setting off equal
lengths. The squares are themselves simple substitutes
for a straight edge and a T square.

3. In paper-folding several important geometrical pro-
cesses can be effected much more easily than with a pair
of compasses and ruler, the only instruments the use of
which is sanctioned in Euclidian Geometry ; for example,
to divide straight lines and angles into two or more equal
parts, to draw perpendiculars and parallels to straight
lines. It is, however, not possible in paper-folding to
describe a circle, but a number of points on a circle, as well
as other curves, may be obtained by other methods.
These exercises do not consist merely of drawing geo
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metrical figures involving straight lines in the ordinary
way, and folding upon them, but they require an in-
telligent application of the simple processes peculiarly
adapted to paper-folding. This will be apparent at the
very commencement of this book.

4. 'The use of the kindergarten gifts not only affords
interesting occupations to boys and girls, but also prepares
their minds for the appreciation of science and art. Con-
versely the teaching of science and art later on can be
made interesting and based upon proper foundations by
reference to kindergarten occupations. This is particu-
larly the case with Geometry, which forms the basis of
every science and art. The teaching of Euclid in schools
can be made very interesting by the free use of the
kindergarten gifts. It would be perfectly legitimate to
requirve pupils to fold the diagrams on paper. This would
give them neat and accurate figures, and impress the truth
of the propositions forcibly on their minds. It would not
be necessary to take any statement on trust. But what is
now realised by the imagination and idealization of clumsy
figures can be seen in the concrete. A fallacy like the

following would be impossible.
5. To prove that every triangle is isosceles. Let ABC be
A
A and through D draw DO per-
! \ pendicular to BC. Bisect the
\:
4 (1) If AO and DO do
S / N not meet, they are parallel
/ o \ > 11y b X
T
™~ \ angles to BC. Therefore

any triangle. Bisect BC in D,
/ angle BAC by AO.
Therefore AO is at right
8 //

B = AB= AC.
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(2) If AO and DO do meet, let them meet in O.. Draw
OE perpendicular to AC and OF perpendicular to AB.
Join OB, OC. By Euclid I. 26 the triangles AOF and
AOE are equal ; also by Kuclid 1. 47 and I. 8 the triangles
BOF and COE are equal. Therefore

AF +FB=AE+EC,
1.e. AB=AC.

It will be seen by paper-folding that, whatever triangle
be taken, AO and DO cannot meet within the triangle.

O is the midpoint of the arc BOC of the circle which
circumscribes the triangle ABC.

6. Paper-folding is not quite foreign to us. Folding
paper squares into natural objects—a boat, double boat,
ink bottle, cup-plate, &c., is well known, as also the
cutting of paper in symmetrical forms for purposes of
decoration. In writing Sanskrit and Mahrati, the paper
is folded vertically or horizontally to keep the lines and
columns straight. In fair copying letters in public offices
an even margin is secured by folding the paper verti-
cally. Rectangular pieces of paper folded double have
generally been used for writing, and before the intro-
duction of machine cut letter paper and envelopes of
various sizes, sheets of convenient size were cut by folding
and pulling asunder larger sheets, and the second half of
the paper was folded into an envelope enclosing the first
half. This latter process saved paper and had the obvious
advantage of securing the post marks on the paper written
upon. Paper-folding has been resorted to in teaching the
XIth Book of Buclid, which deals with figures of three
dimensions. But it has seldom been used in respect of
plane figures. Mr. B. Hanumanta Row, B.a., has done it.
In-his First Lessons in Geometry, he has made frequent
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allusions to it, bnt the hint has not been generally taken
by teachers.

7. T have attempted not to write a complete treatise or
text-book on Geometry, but to show how regular polygons,
circles and other curves can be folded or pricked on paper.
T have taken the opportunity to introduce to the rcader
some well known problems of ancient and modern Geometry,
and to show how Algebra and Trigonometry may be ad-
vantageously applied to Geometry, so as to elucidate each
of the subjects which are usunally kept in separate pigeon-
holes.

8. The first nine chapters deal with the folding of the
regular polygons treated in the first four books of Euclid,
and of the nonagon. The paper square of the kinder-
garten has been taken as the.foundation, and the other
regular polygons have been worked out thereon. Chapter I.
shows how the fundamental square is to be cut and how
it can be folded into equal right-angled isosceles triangles
and squares. Chapter II. deals with the equilateral
triangle described on one of the sides of the square.
Chapter JII. is devoted to the Pythagorean theorem
(BEuclid I. 47) and the propositions of the second book of
Buclid and certain puzzles connected therewith. It is
also shown how a right-angled triangle with a given
altitude can be described on a given base. This is tanta-
mount to finding points on a circle with a given diameter.

9. Chapter X. deals with the Arithmetical, Geometrical,
and Harmonic progressions and the summation of certain
arithmetical series, In treating of the progressions, lines
whose lengths form a progressive series are obtained. A
rectangular piece of paper chequered into squares ex-
emplifies A.P. For the G.P. the properties of the right-
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angled triangle, that the altitude from the right-angle is a
mean proportional between the segments of the hypote-
nuse, and that either side is a mean proportional between
its projection on the hypotenuse and the hypotenuse, are
made use of. In this connection the Delian problem of
duplicating a cube has been explained. In treating of
Harmonic progression, the fact that the bisectors of an
interior and corresponding exterior angle of a triangle
divide the opposite side in the ratio of the other sides of
the triangle has been used. 'This affords an interesting
method of graphically explaining systems in nvolution.
The sums of the natural numbers and of their cubes have
been obtained graphically, and the sums of certain other
series have been deduced therefrom.

10. Chapter XI. dJdeals with the general theory of
regular polygons, and the calculation of the numerical
value of =. The propositions in this chapter are very
interesting.

11. Chapter XII. explains certain general principles,
which have been made use of in the preceding chapters,—
Congruency, Symmetry and Similarity of figures, Concur-
rency of straicht lines, and Collinearity of points are
touched upon.

12. Chapters XIII.and XIV.deal with the Conic Sections
and other interesting curves. As regards the circle, its
harmonic properties among others are treated. The
theories of inversion and co-amal circles are also explained.
As regards other curves it is shown how they can be
marked on paper by paper-folding. The history of some
of the curves is given, and it is shown how they were uti-
lized in the solution of the classical problems, to find two
geometrical means between two given lines, and to trisect
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a given rectilineal angle. Although the investigation of
the properties of the curves involves a knowledge of ad-
vanced mathematics, their genesis is easily understood and
is interesting.

13. I have sought not only to aid the teaching of Geo-
metry in schools and colleges, but also to afford mathe-
matical recreation to young and old, in an attractive and
cheap form. “ Old boys’’ like myself may find the book
useful to revive their old lessons, and to have a peep into
modern developments which, although very interesting and
instructive, have been ignored by the Madras University.
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CHAPTER I.
THE SQUARE.

Tue upper side of a piece of paper lying flat upon a table is a
plane sarface, and so is the lower side which is in contact with
the table.

2. The two surfaces are separated by the material of the
paper. The material being very thin, the other sides of the
paper do not present appreciably broad surfaces, and the edges
of the paper are practically lines. The two surfaces though
distinct are inseparable from each other.

3. Look at this irregularly shaped piece of paper, and at
this piece of letter paper which is
rectangular. Let us try and shape
the former paper like the latter.

4. Place the irregularly shaped
piece of paper upon the table, and
fold it flat upon itself. Let AB be
the crease thus formed. It is
straight. Now pass a knife along
the fold and separate the smaller
piece. We thus obtain one straight
edge.

5. Fold the paper again as be-
fore along CD, so that the edge AB
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is doubled upon itself. Unfolding the paper, we see that the
crease CD is at right angles to the edge AB. It is evident
by superposition that the angle ACD = the angle BCD, and
that each of these angles = an angle of the letter paper. Now
pass a knife as before along the second fold, and remove the
smaller piece.

6. Repeat the above process, and obtain the edges EF
and GH. It is evident by superposition that the angles at
C, B, G and H are right angles, equal to each other, and that
the sides CE, EG are respectively equal to GH and HC. This
piece of paper is similar in shape to the letter paper.

7. It can be made equal in size to the letter paper, by
measuring off CE and EG equal to the sides of the latter.

8. A figure like this is called a rectangle or an oblong. By
superposition, it is proved that (1) the four angles are right
angles and all equal, (2) the four sides are not all equal.
(3) But the two long sides are equal, and so also are the two
short sides.

9. Now take this rectangular
piece of paper, and fold it obliquely
so that one of the short sides falls
upon one of the longer sides. Then
fold and remove the portion which
overlaps. Unfolding the sheet, we
find that it is now square, ¢.e., its

four angles are right angles, and all

its sides’are equal.

10." The crease which passes through a pair of the opposite
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corners is a diagonal of the
square. One other diago-
nal is obtained by folding
the squarve through the
other pair of corners.

11. We see that the
diagonals are at right an-
gles to each other, and
that they bisect each other.

12, The point of inter-
section of the diagonals is
called the centre of the
square.

13. Each diagonal divides the square into two equal right
angled isosceles triangles, whose vertices are at opposite corners.

14. The two diagonals together divide the square into four
equal right-angled isosceles triangles, whose vertices are at the
centre of the square.

15. Now,'fold again, laying one side of the square upon its
opposite side. We get a
crease which passes
through the centre of the
square. It is at right
anglesto the other sides
and bisects them (1). It
is also parallel to them (2).
It is itself bisected at the
centre (3). It divides the
square into two equal rec-
tangles, which are, there-
fore, each half of it (4)
Bach of these rectangles is
equal to the triangles into which either diagonal divides the
square (5).
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16. Let us fold the square again, laying the remaining two
sides one upon the other. The crease now obtained and the one
referred to in para. 15 divide the square into 4 equal squares.

17. Folding again
through the corners of the
smaller squares which are

A at the centres of the sides
A of the larger square, we
vllvl obtain a square which is

19. By joining the midpoints of the sides of the inner

square, we obtain a
square. which. is § of
the original square.
By repeating the

v process, we can ob-
' tain any number of
‘ . squares which are

to one another as

inscribed in the latter.
18. This square is half
the larger square, and has

the same centre.

111 1

Y &8 16
or :_), .:)2, §3, Q4, .......
Each square leaves
3 of the next larger

square, 1.e., the four
triangles left from each square are together equal to half of it.
The sums of all these triangles increased to any namber cannot
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exceed the original square, and they must eventually absorb
the whole of it.

Therefore %+3;2+:];3+ &e. to infinity = 1.

20. The centre of the square is the centre of its circum-
scribing and inscribed circles. The latter circle tonches the
sides at their mid-points, as these are nearer to the centre
than any other points on the sides.

21. Any crease through the centre of the square divides
it into two trapezinms which are equal in all respects. A
secoud crease at right angles to the above divides the square
into four congruent quadrilaterals, of which two opposite
angles are right angles. The guadrilaterals are concyclic.
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THE EQUILATERAL TRIANGLE.
Now take this square piece of paper, fold it double laying

/)

two opposite edges one
upon the other. We ob-
tain a crease which passes
through the middle points
of the remaining sides,
and is at right angles to
them. Takeany pointon
this line, fold through it
and the two corners of the
square which are on each
side of it. We thus get
isosceles triangles, stand-
ing on a side of the square.

2. The middle line divides the isosceles triangle into two

equal right-angled triangles.

8. The vertical angle is bisected.

N

4, If we so take the
point on the middle line,
thatitsdistance fromeither
corner of the square is
equal to a side of it, we
should obtain an equilate-
ral triangle. This point
is easily determined by
turning the base through
one end of it until theother

end rests upon the middle
line.
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5. TFold the equilateral triangle by laying each of the sides

upon the base. We have
" thus obtained the three
altitudes of the triangle.
6. Each of the alti-

tudes divides the triangle

into two equal right-

|‘ &‘ AQ and CP meet in O.
Join BO and produce it to

meet AC in R.  Then BR can be proved to be the third alti-
tude. From the triangles AOP and COQ, OP=0Q. From
As OPB and 0QB, 20BP=20BQ. Again from triangles
ABR and CBR, £ BRA= £ BR(, 4.e., each of them is a right
angle. That is, BOR is an altitude of the equilateral triangle

ABC. It also bisects AC in R.

10, It can be proved as above that OA, OB and OC are
equal, and that OP, OQ and OR are also equal.

angled triangles.

7. They Dbisect the
sides at right angles.

8. They pass through
a common point.

9., Let the altitudes

11. Circles can, therefore, be described with O as centre
and passing throngh A, B and C and through P, Q and R.
The latter circle touches the sides of the triangle.

12, The equilateral triangle ABC is divided into six equal
right-angled triangles which have one set of their equal angles
at O, and into three congruent symmetrical concyclic quadri-
laterals.

13. The A AOC is double the AQOC; therefore, AO=2 0Q.

Similarly, BO=2 OR and CO=2 OP. The radius of the cir-
cumsecribing circle is twice the radius of the inscribed circle.
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14, The right angle at A of the sqnare is trisected by the
straight lines AO, AR. The angle BAC = g of a right angle.

The £s PAO and RAO are each % of a right angle. Similarly
with the angles at B and C.

15. The six angles at O are eachg of a right angle. -

A

16. Fold through PQ,
QR, and RP. Then PQR
is an equilateral triangle.
It is a fourth of the tri-
angle ABC.

17. PQ, QR & RP are
each parallel to CA, AB &
BCand halves of them.

18, APQRisarhombus.

. So are BPRQ and CRPQ.
8 19. PQ, QR & RP bi-

| sect the corresponding alti-
tudes.

bis

20. CP? 4+ APP=AC?
CP+ ; ACP=AC?
a3 s
cPe=2 AC

CP = v/2AC=+/2 AB = AB x '866......
21. The A ABC=rectangle under AP, CP.
.1 3
'z,.e—.g AB x \/2 AB.
=v/2 AB. = AR x -433......

22. The angles of the triangle CAP are in the ratio of
1:2 : 3, and its sides are in the ratio of V1:+/3: V4
Pythagoras called it the most beautiful scalene triangle.




CHAPTER IIl.
SQUARES AND RECTANGLES.

Foup the given square asinthe annexed figure. This affords
the well-known proof of

L N the 47th Proposition of
the first book of Enclid.

FGHbeing a right-angled

triangle, the squnare on

FH = the squares on FG

and GH. ’

Sq. FA + sq. DB = sq.

FC.

It is easily proved that
‘ FC is a square, and that
the triangles FGH, HBC,
L KDC, and FEK are equal

in every respect.
If the triangles FGH and HBC are cut and placed upon the
other two triangles, the square FHCK is made up.

If AB=a, AG = b,and FH =¢, a® + b? = ¢%

2. Fold the given
square like this. Here
the rectangles AF, BG,
CH and DE are equal,
as also the triangles of

which they are compos-
ed. EFGH is a square,
as also KLMN.

‘

Let AK =a, KB =1,
and NK =¢

Then a? + b2 =2 i.e.,
sq. KLLMN,
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The sq. ABCD = (a+D)2

Now sq. ABCD overlaps the sq. KLMN by the four triangles
AKN, BLK, CML, and DNM.

But these four triangles are equal to two of the rectangles, 7.e.,
to 2ab.

Therefore (a+b)?=a?+ b2+ 2abd.

3, EF=q—Db, and sq. EFGH=(a — b)%

The square EFGH is less than the square KLMN by the
4 triangles FNK, GKL, HLM, and EMN,

But these 4 triangles make up two of the rectangles, <.c., 2ab.

Jo(la— b)? = 0?4 b* — 2ab.

4, The sq. ABCD overlaps the square EFGH by the
4 rectangles AF, BG, CH, and DE.

s (a+b)?— (a — b)*=4ab.

5. Inthe annexed figure, the sq. ABCD=(a+0)?% and thesq.
EFGH = (a— 02 Also

Sq. AKGN=sq. ELCM
=a?

Sq. KBLF=sq. NHMD
=b%

Squares ABCD and
EFGH are together = the
latter four squares put
together

=twice the square

AKGNandtwice thesquare
KBLF, that is, (a+b)*+(a—02=2a>+20%
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6. In this figure the
rectangle PL is equal to

(a+b)(a—Db).

Because the rectangle
EK=FM, rect. PL=sq.
PK—sq. AL, e, (a+b)

(a—b)=a?~—0%

7. If squares be described about the diagonal of the given
square, the right angle at

X one corner being common
to them, the lines which
join this corner with the
middle points of the oppo-
site sides of the given
square bisect the corre-
sponding sides of all the
inner squares.

The angles which these

lines make with the dia-
gonal and the adjacent sides
are respectively equal, and
their magnitude is constant
for all squares as may be
seen by superposition. Therefore the midpoints of the sides
of the inner squares must lie on these lines.

8. ABCD being the given square piece of paper, it is
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required to obtain by fold-
ing, the point X in AB,
such that the rectangle
under AB, BX is equal to
the square on AX.

Double BC upon itself
and take its midpoint E.

Fold through E, A.

Lay EB upon EA and
fold so as to get EF, FG.

Take AX=AG

Then the rectangle un-
der AB, BX=sq. ou AX.

Complete the rect. BX
HC and the square AXKL,
Let XH cut EA in M. Take FY=FB.

Then FB=FG=FY=XM
and XM = ;—AX.

Now, because BY is bisected in F and produced to A

Rect. under AB.AY + sq. ou FY =sq. on AF

. =sq. on AG+sq. on FG.

- Rect. under AB, AY ’
=sq. on AG.
=sq. on AX,

But sq. on AX=four times sq. on XM=sq. on BY.
~AX=BY ’
and AY=BX.
~.Rect. under AB, BX=sq. on AX.
AB is said to be divided in X in medial section.
"~ Also
Rect. under AB, AY =sq. on BY,

.., AB is divided in medial section, also in Y.
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9. A circle can be described with F as centre and passing
through B, G and Y. It will touch BA at G, because FG is the
shortest distance from F to the line EGA.

10. Rect. XYNK=sq. CHKP,
i.e., Rect. under AX, XY =sq. on AY,
.., AX is divided in medial section in Y.
Similarly BY is divided in medial section in X.
11. Sq. on AB+sq. on BX=three times the rectangle under
AB, BX.
12, Rectangles BH, and YD being each = rect. under AB,
BX, rect. HY +sq. CK=rect. under AB, BX.
13. Rect. HY = Rect. BK, t.e., rect. under AX, BX = rect.
under AB, XY.
14. Rect. HN=Rect. under AX, BX~sq. on BX.
15. Let AB=a, BX=u.
Then (a—a)l=ae.
a? + 2 =3ac.
Again,
#?—3aw+ a*=0
a
T = 5 (8 — \/5)
2= =3
@ = (7—3+v5)
a—o =% (vVB=1) =a x ‘6180,

(a—a)? =§; (3 —~5) =0 x "3819... ..
The rect. BXKP
=(g—wn)e
=a? (V5—-2) =a? x 2360......
16. BA? = 3EB? =j:; AB®.

EA =_‘/% AB =a x 11180......

2
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17. In the language of proportion
AB : AX :: AX : BX.

The straight line AB is said to be divided * in extreme and
mean ratio.”

18. Let ABbedivided in
X in medial section. Com-
plete the rectangle XBCH.
Halve the rectangle by the
line MNO. Find the point
N by laying XA over XN and
fold through XN, NB, and
NA. Then ABN is an isos-
celes triangle having its
angles ABN and ANBdouble
the angle BAN.

AX=XN=NB
£ ABN= £ BXN
2/ XAN= £ XNA
£BXN=2 £ XAN
£ ABN=2 £ BAN.
AN? = MN? + AM?
== BN? — BM? + AM?
= AX? + AB.AX
= AB.BX + AB.AX
== AB?
. AN = AB

2 BAN =25 of a right angle.
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19. The right angle at
A can be divided into five
equal parts as in annexed

figure.

',,
4‘

‘ 20, To describe aright-

‘ h angled triangle on the
i base AB, with a given

N

-

Fold EF parallel to-AB

B
N

at the distance of the

given altitude.

Take G the middle
pointyof AB. Find Hby
folding GB through G- so

that B may fall on EF.

Fold through H and

A, G, and B.

AHB is the triangle re-

quired.
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SQUARES AND RECTANGLES. [CHAP.

21. AKLM is a rec-
tangle. Tt is required to
find a square equal to it
in area.

Make KN=KL.

Find G the middle
point of AN.

Describe the right-
angled triangle AHN
with the vertex on KLH.

Describe a sqnare on

KH, KHPQ.

The square is equal to the given rectangle.

22. HA and SQ divide the rectangle into 3 parts which can

be fitted into the square KHPQ.

23. Take four equal squares and cut each of them into two

=

B

pieces through the middle
point of one of the sides and
an opposite corner. Take
also another equal square.
The eight pieces can be ar-
ranged round the square so
as to form acomplete
square.

Thisis a very interesting
puzzle,

The fifth square may also
be cut like the others and
the puzzle put this way.

Four of the squares

obviously form a complete square. Absorb the fifth square into

& new square.
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g 'v’ 24, Similar puzzles can
be made by cutting the

W squares through one cor-

‘ ner and the trisectional
points of the opposite side.

If the nearer point is

taken 10 squares are re-

quired ; if the remoter

point is taken 13 squares

are required.
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25, The above puzzles are based upon the formulse

194220=5
124-82=10
2243213,

26. The process may be continued, but the number of squares

will become inconveniently large.

27. Consider the figure in Art. 1, Chapter III. If the four
triangles at the corners of the given square are removed, one
square is left. If the two rectangles FK and KG are removed,

two squares in juxtaposition are left.

28. The given square may be cut into pieces which can be
arranged into two squares. There are various ways of doing

this. The diagram in Art. 23, Chapter I1L. suggests the follow-
ing elegant method :—The required pieces are the square in the

centre, and the four congruent symmetrical concyclic quadri-
laterals at the corners. In this figure, the lines from the
midpoints of the sides pass through the corners of the given
square, and the central square is one-fifth of it. The magni-
tude of the inner square can be varied by taking other points

on the sides instead of the corners.

29. .The given square can be divided as follows into three

equal squares :—
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Take BG = half the diagonal of the square.

Fold through C and G.

Fold BM perpendicular to CG.

Take MP, ON, and NL each = BM.

Fold PH, NK, LF at right angles to CG, as in the figure.

Take NK = BM, and fold IKE at right angles to NK.

Then the pieces 1, 4 and 6, 3 and 5, and 2 and 7 form three
equal squares.

Now CG*=:3BG*
and from the triangles CBG and CMB

BM _ BG
BC ~ CG
O BB{:—Q—

V3



CHAPTER IV.
THE PENTAGON.,

To cut off a regular
pentagon from the square

N £
'h' ABCD.
Dividle AB in X in
medial section and take M
0 o the mid point of XB.

‘ 7 Then AB. BX = AX?,
BM=MX.
Take AN=BM or MX.
Then MN=AX.
'A Lay NP and MR equal

to MN, so that P and R

may lie on AD and BC respectively.

Lay RQ and PQ=MR and NP,

MNPQR is the pentagon required.

In fig. in para. 18, Chap. ITI., AN which is equal to AB, has
the point N on the perpendicular MO. If A be moved on AB

over the distance MB, then it is evident that N will be moved
on to BC, and X to M.

Therefore in the present figure NR=AB. Similarly MP=
AB. PR isalso equal to AB and parallel to it.

£BMR is % of a right angle. Therefore the angle NMR=

ol o

of a right angle. Similarly £ MNP is g- of a right angle.

6
From the triangles NMR and RQP, £ NMR= £ RQP:E) of

a rt. angle.
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The three angles at M, N and Q of the pentagon being
each equal to & of a rt. £, the remaining 2 angles are together
equal to %2 right angles, and they are equal. Therefore each of
them is € of a rt. angle.

Therefore all the angles of the pentagon are equal.

It is also equilateral from the construction.

2. The base MN of the pentagon is equal to AX, i.e., to

B —
:%_ (v5—1) = AB x “6180......

3. The greatest breadth of the pentagon is AB.

0w

S/

R

4, 1If p be the altitude,
AB’=p*+ {%( JB—]) }2
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=p?+AB2 3;‘{5.

3—-+§
2. AR2J1—
p?=AB {1 5 }

5445
3

=AB2

4
=AB x 9510...... = AB Cos 18°

p=AB. V10+2/5

5. If R be the radius of the circomseribing circle,

AB 2AB

3005 18°° \/10+2/5

V5—5
=AB 36

= AB x '5257......

6. If r be the radius of the inscribed circle,

7. The area of the pentagon is 57 x § the base of the
pentagon,

i.e., 5AB. \/5+*/J.—§(,\/g— 1)

5 5—J5
2 =z L=
=AB2. V1
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8, In fig. in para. 1, Chap. IV., let PR be divided by MQ
and NQ in Eand F.

Then RE=FP=MN  _1 _,p ~i=l
2 cos 36° NO4+1
—AB. 31‘21/3 ............. 1)
EF=AB—2 RE=AB—AB(3—,/5)=AB (/5—2)......(2)
RF=MN.
RFE:RE:RE:EF.......cn(3)
NE—1:8—n5::8—n/5:20 54 4)

The area of the inner pentagon

—RFe. §\/5~— V35
4 10

=AB (V520 - 4/° —10~/ 5

5—a/5

1o G
The larger pentagon : the smaller::1:(./5—2)*
::1:-05569......

—AB2. (9 —4/5). Z. \

9, If in the figure in Art. 1, Chapter IV, angles QEK and
QFL are made equal to EQR or FQP, K, L being points on
the sides QR and QP respectively, then EFLQK will be a
regular pentagon equal to the inner pentagon. Pentagons can
be similarly described on the remaining sides of the inner
pentagon. The resulting figure consisting of six pentagons is
very elegant.



CHAPTER V.
THE HEXAGON.

To cut off a regalar hexagon from the given square.
Fold through the mid

Y % points of the opposite
sides, and obtain the
lines AOB and COD.

Ou both sides of AO
and OB describe equi-
lateral triangles, AEO,

8 AHO; BFO and BGO.

Join EF and HG.

AEFBGH is a regular
hexagon.

It is unnecessary to

A/

give the proof.

2. The greatest breadth of the hexagon is AB.
3. The altitude of the hexagon is

1/; AB. = AB x ‘866......

4. If R be the radius of the circumscribing circle,
1
R=§ AB.
5. If = be the radius of the inscribed circle,

o‘=\/_34AB — AB x 433......

6. Theareaof the hexagon is 6 times the area of the triangle
HOG.
= 6. é]}‘ \/'é AB.
4 4
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_ 3;8/3 AB%. — AB? x ‘6495... ..

Also the hexagon = i AB. CD.

= 1% times the equilateral triangle on AB.
N N N e

AWV
TAVAVAYA
NN
AVAVAVAN

— /N A A

7. Theabove figure is an instance of ornamental folding, into
equilateral triangles and hexagons.

8. A hexagon is formed from an equilateral triangle by fold-
ing the three corners to the centre.

The side of the hexagon is % of the side of the equilateral

-

triangle.

The area of the hexagon = ?; of the equilateral triangle.

3
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A.A‘
<

9. The hexagon can be
divided into equal regular
hexagons and equilateral
triangles as in the annexed
figure by folding thrdugh
the points of trisection of

the sides.




CHAPTER VI.
THE OCTAGON.

To cut off a regular octagon from the given square.

Obtain the inscribed squarve by joining the mid-points
A, B, C, D of the sides of
the given square.

Bisect the angles which
the sides of the inscribed
squaremake with the sides
of the other. Let the

bisecting lines meet in E,
F, G and H.

EFGH is a regular

The As ABE, BCF,

A 5
CDG and DAH are equal
isosceles triangles. The octagon is therefore equilateral.
The angles at the vertices E, F, G, H of the same four As

are each one right angle and a half : because the angles at the
base are each one-fourth of a right angle.

Therefore the angles of the octagon at A, B, C and D are cach
one right angle and a half.

Thus the octagon is also equiangular.
2. The greatest breadth of the octagon is the side of the given
square, a.

3. If R be the radiug of the circumscribed circle,
R="

2
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|

RS
e

4, The angle subtended at the centre by each of the sides is

half a rt. angle.
5. Join OE and let it cut AB in K,

OA a
Then AK=0K=-"2__%
on V2T 249

a a a —

= —_— = e == — — A9

KE = 0A—O0K = § — ;55 =2 (2— v3)
Now from the A AKE, AE?2 = AK? + KE?

@, @ o/
=g+g (3—2~/2)

a? —
= g (4—2 v'2)
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=2 (2—v3)
z C )
JAE= %\/2—-“/2
6. The altitude of the octagon is CE.
But CE?=AC?—AE?
a? 5 a° _
=a— 7 (2— V32) = 7 @+ V'2)

CE=2v2+ /3
7. The area of the octagon is eight times the triangle AOE
a _ao_ _ @
and equals 4 OE. AK = 4. 5 9vs — 73

8. A regular octagon may also be obtained by dividing the
angles of the given square into four equal parts.
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It is easily seen that Ed=ad=a;
BS:ax/é_;
BE=a(v2—1);
BE=aH=0eK;
KB=a—a(V2—1)
=a(2—\/2ﬁ)“ .
Now K®=a?+a?(v/2—1)%= a?(4—2+/2)
- Kd=av/4—22.

Also GE=B5—28E
=av/3—2a(+2—1)
=a(2—v/2);

. HO= g(g—/é).
Again bS: g v/ 2,
and H&=HO0?+ 08
- %?{6—4«/%2 y
=a2(2—v/2);

5 HS =av/(2—V2).
HK=K8—HS

=a\/4—2~/2——a\/2__«/é
=a. (V2—V/2). (V3—1)
=0 3/10—7+/2.

[cHAP,
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S AL = HK == \/10_74/0

and HA =3./90 —14/3.

9. The area of the octagon is 8 times the triangle HOA.

=4 1o, 29

V2
=HO02 2V2

={se—vt ovs

Z 2v/2. (6—4V/'2)
=0 (3v2—4)
=a% V2. (V2—1)

10. This octagon : the octagon in para. 1
it (2—V2):1 or 2:(V2+1);

and their bases are to one another as V2 ; v + 1.




CHAPTER VIl
THE NONAGON.

ANY angle can be trisected fairly accurately by paper folding.
Obtain the three equal
\ angles at the centre of an
'A\ equilateral {triangle.
N ]

ing, cut out the three angles,

AOB, BOC and COA.
Trisect each of the angles
as in the figure, and make

the arms=0A.

The trisection can be faci-
A litated by first describing a
. ’ circle with O as centre and

radius OA.

For convenience of fold-

2. The angles of a nonagon are each lg of art.angle=140°,

The angle subtended by each side at the centre is % of art.

angle or 40°

Half this angle is —,17 of the angle of the nonagon.

1
3, OA= 3%
This is also the radius of the eircumscribing circle, R.

The radius of the inscribed circle=R. cos 20°=~;12a cos 20°.

=_; X ‘9396926

=a x '4698463.
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The area of the nonagon is 9 times the triangle AOL

=9.R.1 R Sin 40°

=2 B2, Sin 40°

1

__9a*
-8

= a? x '723136.

X 6427876

33



CHAPTER VIl

THE DECAGON AND THE
DODECAGON.,

Tue following figures show how a regular decagon, and a
regular dodecagon, can be obtained from a pentagon and

hexagon respectively.

K,

/

)
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| [ VT~ \ |

oy

L

2. The main part of the process is to obtain the angles at

the centre.

3. Infig. 1, the radius of the inscribed circle of the pentagon
is taken for the radius of the circumsecribing circle of the

decagon, in order to keep it within the square.

4, A regular decagon may also be obtained as follows :
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Obtain X, Y, as in Chap. IIL, para. 8, dividing AB in medial
sections.

Take M the midpoint of AB.

Fold XC, MO, YD at right angles to AB.

Take O in MO such that YO=AY, or XO=XB.

Let YO, and XO produced meet XC, and YD in C and D
respectively.

Divide the angles XOC and YOD into 4 parts by HOE,
KOF, and LOG.

Take OH, OK, OL, OE, OF and OG equal to OY or OX.

Join X, H, K, L, C,D, E, F, G and Y, in order.

As in Chap. IIL, para. 17,

2
£LX0Y= 5 of a right angle=36°.



CHAPTER IX.
THE QUINDECAGON.

THis figure shows how the quindecagon is obtained from the
pentagon.

Let ABCDE be the pentagon and O its centre.

Join OA, OB, OC, OD and OE. Produce DO to meet AB
in K.

Take OF = § of OD.

Fold GFH at right angles to OF. Make OG, OH = OD.

Then GDH is an equilateral triangle, and the angles DOG
and DOH are each 120°.
4
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But £DOA is 144°; therefore 2 GOA 1is 24°.
That is, the angle AOE which is 72° is ¢risected by OG.

Bisect the 2 GORE by OL meeting EA in L, and let OG
cut EAin M
then OL=0M.

In OA and OE take OP and OQ equal to OL or OM.
Then PM, ML, and LQ are three sides of the quindecagon.

Treating similarly the angles AOB, BOC, COD, and DOE,
we obtain the remaining sides of the quindecagon.



CHAPTER X.
THE PROGRESSIONS.

ARITHMETICAT, PROGRESSION.

The annexed diagram exemplifies Avithmetical Progression.

The horizontal
ENEEEEEEEN o oo
EECEEREEEN

- - and lower edges
.ll. IIII. o in AP, The

cluding the upper

. mihial line being
.-....N..- a and b the com-
mon difference,
..-..==E§. the series 1is a,

@+ b, a + 20,
a+3b, &c.

2. The portions of the horizontal lines to the right of the
diagonal are also in A.P., but are in reverse order and decrease
with a common difference.

3. If, generally, I be the last term, and S the sum of the
series, the above diagram graphically proves the formula

7
= :Z—(Z-i—a,).
4, If ¢ and ¢ are two alternate terms, the middle term is

5 (ato).
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5, To insert » means between o and I, the vertical line has
to be folded into » + 1 equal parts. The common difference

. l—a
w1]1ben+1

6. Considering the reverse series and interchanging a and ,
the series becomes

a,a—>ba—2b . . L
The terms will be positive so long as ¢ = (r — 1) b, and
thereafter they will be negative.
GEroMETRICAL PROGRESSION.

7. In a right-angled triangle, the perpendicular from the

vertex on the hypotenuse is a geome-

0
N tric mean between the segments of
the hypotenuse. Hence, if two alter-
© o < « hate or consecutive terms of a G.P.
< = S < be given in length, the series can be
determined as in the accompanying
:’( figure. Here CA;, CA, CA; CA,
and CA;, are in G.P., the common
~ ratio being C:A'z.
> CA,

8. If CA, be the unit of length, the series cousists of the
natural powers of the common ratio.

9, Representing the series by a, ar, ar®,........ ...
A Ay=a \/ 1422
A, Ag=ar 4/ T+72
A A= arg\/ SRS

These lines also form a G.P., with the common ratio 7.
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10, The terms can also be found backwards, in which case
the common ratio will be a proper fraction. If CAjbe the
unit, CA, is the common ratio. The sum of the series to

e CA;
infinity is CA—E,——CTX;'

11, In the manner described above, one Geometrical mean
can be found between two given lines, and by coutinuing the
process, 3, 7, 15, &c., means can be found. In general, 27—1
means can be found, n being any positive integer.

12. Tt isnot possible to find two Geometrical means between
two given lines, merely by folding through known points. In
the above tigure, CA; and CA, being given, it is required to
find A, and A;. Take two rectangular pieces of paper, and so
arrange them, that their outer edges lie on A, and A, and a
corner of each lies on the straight lines CA, and CA,, while at
the same time the other edges ending in the said corners coin-
cide. The positions of the corners determine CA, and CA,.

13. This process gives the cube root of a given number,
for if CA, be the unit, the series is 1, r, 72, 73

14. There is a very interesting legend in connection with
this problem. “The Athenians when suffering from the great
plague of eruptive typhoid fever in 430 B.C., consulted the
oracle at Delos as to how they could stop it. Apollo replied
that they must douwble the size of his altar which was in the
form of a cube. Nothing seemed more easy, and a new altar
was constructed having each of its edges double that of the old
one. - The God, not unnaturally indignant, made the pestilence
worse than before. A fresh deputation was accordingly sent to
Delos, whom he informed that it was useless to trifle with him,
as he must have his altar exactly doubled. Suspecting a mys-
tery, theyapplied tothe Geometricians. Plato, the most illustrious
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of them, declined the task, but referred them to Euclid, who had
made a special study of the problem.” Kuclid’s name isan
interpellation for that of Hippocrates. Hippocrates reduced
the question to that of finding two means between two straight
lines, one of which is twice as long as the other. If a, z, y and
2a be the terms of the series «® = 2¢%. He did not, however,
succeed in finding the means. Menzchmus, a pupil of Plato,
who lived between 375 and 325 B.C., gave the following two
solutions :

a:m ey ity la.

From this relation we obtain the following three equations:

W =0y ... (1)
yYr=2ar.......... (2)
wy=2a> ............ (3)

(1) and (2) are equations of parabolas and (3) is the equation
of a rectangular hyperbola. Hquations (1) and (2) as well as (1)
and (3) give 23=2a3. The problem was solved by taking the
intersection (a) of the two parabolas (1) and (2) and (B) of the
parabola (1) with the rectangular hyperbola (3).

Harmoxic PROGRESSION.

15. Fold any lines AR, PB as in the next figure, P being
on AR, and B on the edge of the paper. Fold again so that
AP and PR may both coincide with PB. Let PX, PY be the
creases thus obtained, X and Y being on AB.

Then the points A, X, B, Y form an harmonic range. That
is, AB is divided internally in X and externally in Y such that
AX : BX :: AY : BY.

16. It is evident that every line cutting PA, PX, PB and
PY will be harmonically divided.
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17. Having given A,
B and X to find Y : fold
any line XP and mark
K corresponding to B.
Fold AKPR, and BP.
Bisect the angle BPR by
PY by folding through P
so that PB and PR may

A coincide.

Because XP bisects the angle APB,
SAX : BX :r AP : BP,
:: AY : BY.
18. AX :BX :: AY : BY
or AY—XY : XY-—BY :: AY : BY.

Thus, AY, XY, and BY are in Harmonic Progression, and
XY is the Harmonic Mean between AY and BY.

Similarly AB is the H.M. between AX and AY.

19. If YB and YX be given, to find the third term YA,
we have only to deseribe any right angled triangle on XY as
hypotenuse and make £XPA =2 XPB.

920. Let AX=u, AB=b, and AY =c.

“ _ 2ac
I'hen b= s
or, ab+bec=2uac
o b b
O C= o = 2_{)4

When a=d, ¢c=b.
When b=2a, c= o..
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Therefore when X is the middle point of AB, Y isat an
infinite distance to the right of B. Tt approaches B as X
approaches it, and ultimately the 3 points will coincide.

As X moves from the middle of AB to the left, Y moves from

an infinite distance on the left towards A, and ultimately X, A,
and Y coincide.

21. If E be the middle point of AB,
EXEY = fA2 = EB?
for all positions of X and Y with reference to A or B.
Each of the two systems of pairs of points X and Y is called
& system in Tnwolution, the point B being called the centre and

A or B the focus of the system. The two systems together may
be regarded as one system.

22. AX and AY being given, B can be found as follows :—

Produce XA and take
AC=AX.

‘Take D the middle
point of CY.

Take CE=ADor AE=
CD.

Fold through A so that
AF may beat right angles
to CAY.

Find F such that DF=
DC.

Fold through EF and obtain FB, such that FB is at right
angles to EF.
CD is the Arithmetical Mean between AX and AY.
AF is the Geometrical Mean between AX and AY.
AT is also the Geometrical Mean between CD or AE and AB.
Therefore AB is the Harmonic Mean between AX and AY.
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23. The following is a very simple method of finding the
H. M. between two given lines.

Take AB, /CD on the
edges of the square equal to
the given lines. Fold the
diagonals AD, BC and the
sides AC, BD. Fold through
B the point of intersection
of the diagonalsso that FEG
may be at right angles
to the other sides of the
square or parallel to AB
and CD. Let FEG cut AC
and BD in F and G. Then
FG is the H. M. between
AB and CD.

For
EF CE
ABT CB
andgg——-—@
CD B
EF EG .CE BE
-astop~oBto L
1 1 1 2
“ AB T TP T EF T FG

24, Tbe join HK of the midpoints of AC and BD is the
A. M. between AB and OD.

25, To find the G. M. take HL in HK=FG. Fold LM at
right angles to HK. Take O the midpoint of HK and find M
in LM so that OM=OH. HM isthe G M. between AB and CD
as well as between FG and HK. The G. M. between two quan-
tities is the &. M. between their A. M. and H. M.
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SUMMATION OF GERTAIN SKRIES,

26. To sum up the series
1+345...... +(20n—1)

Divide the given square into a number of equal squares as in
the accompanying figure. Here we have 49 squares, but the
number may be increased as we please.

The number of squares will evidently be a square number,
the square of the number of divisions of the sides of the given
square.

Let each of the small squares be considered as the unit.

The numbers of unit squares in each of the gnomons Aa, Bb,
&e., are respectively 3, 5, 7, 9, 11, 13.
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Pherefore the sum of the series 1, 3, 5, 7, 9, 11, 13 is 72
Generally, 1 +3+5+... + Ru—1)=n2

27. To find the sum of the cubes of the first « natural
numbers.

Fold the square into 49 equal squares as in the preceding
article, and letter the gnomons. Fill up the squares with
numbers as in the multiplication table.

The number in the initial squares is 1=17%

The sums of the numbers in the gnomons Aa, Bb, &c., are 23,
3%, 43, 53, 63 and 73

The sum of the numbers in the first horizontal row is the
sum of the first seven natural numbers. Let us call it S.
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Then the sums of the numbers in rows a, b, ¢, d, &c., are
28, 38, 48, 58, 68, and 78S.
Therefore the sum of all the numbers is
SA+2+3+4+5+6+7)=8%
Therefore, the sum of the cubes of the first seven natural
numbers is equal to the square of the sum of those numbers.

Generally, 13423435, + w3

=(1+2+3...... +n)?

- { nlnt D

2
or (na+12—(n—1n)2 = n2+n)’— (n2—n)? =4n’.
Putting n=1, 2,3 ........in order, we have
4.13=(1.2)2—(0) - Adding up
4.23=(2.3)—(1.2) 4S={n{n+1)}?
4.33=(3.4)2—(2.3)? R {n(n+ 1)}‘{
P : 2

43 =(nn+1)2—(n—1n) |
28. If 3, be the sum of the first » natural numbers,
Sn?'—sﬂg—l:ng-
29, To sum the series
1.2423+34...... 4+ (n—1)n.
In the above table, the figures on the diagonal commencing
from 1, are the squares of the natural numbers in order.

The figures in one gnomon can be subtracted from the
corresponding figures in the succeeding gnomon. By this
process we obtain

—(n—1)P=n2—(n—1)?
+2{n(n—1)+nm—2)+(n—3)...... +1}
=0 +(n—1)P2+2{1+2......+5%—1}
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=+ (n—1)+n(n—1)
=(n—n—1)2+3(n—1)n
=1+3(n~—1)n.
Now W—(n—-1P=14+3(n~-1)n
(n—1P~(n— ))‘-" 1 —I—3(n—— ))(n—l)

251514821

13—-0%=1+0.
Hence, by addition,
nd=n+3{1.24+234+ ... + (n—1).n}

L2423+ (e—1)m=

S —n (n— Dn(n + 1)
3 3

30. To find the sum of the squaves of the first n natural
numbers,

)
=12422432 +rP—(1+2+3...+n)
n(n+1)

p—

=1242243% ... + 12—

(n~~ l)n(n—{—l) w(n+1)
— 4+ —=
2
=n(n+1) 5 R + }
. ﬁ_@w(enm*
= e
31l. To sum up the series
12432452 .. ... + (2n—1)2
w3—(n—1P =924+ (n—1)*+n(n—1)
=2n—1)?2—(n—")n.
* 612 = n(n+1)2n+1)—(n—1)n(2n—1)

Put n=1, 2, 3, 4......in order and add up.
5
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Thus by putting =1, 2, 3......... ...
15—08=12—0
25 .18=3%—1.2
33-22=32—2.3

n3— (n—1)3=(2n—1)>—(n—1).n.
Adding up, we get
nd=124+32+5%.. ...+ (2n—1)

—{1.2+23+34 ..... +(a—1).n }
135 +(2n—1)?
g
=n°+ 3

_dat—n _n(n—1)(@n+1)
-3 = 3

[cHAP. X.



CHAPTER XI.
POLYGONS.

Take O the centre of the square and its diameters. Bisect
the right angles at the centre, then the half right angles, and
so on. Then we obtain 2” equal angles round the centre and

the magnitude of each of the angles is - of a right angle, »

being a positive integer. Mark off equal lengths on each of
the lines which radiate from the centre. If the extremities of
the radii are joined successively, we get regular polygons of
27 gides.

9. Let us find the perimeter and area of these polygons. In
the accompanying figure let OA and OA; be two radii at right

angles to each other. Let
, the radii OA,, OA;, OA,, &c.,
divide the right angle AOA,
in2 4,8 ... parts. Join
AAL, AA, AA, L. cutting
the radii OA,, OA; OA, ...
at B;, By, B, ... respectively,
at right angles. Then B,
B,, B; ... are the mid points
of the respective chords.
Then AA;, AA, AA, AA,,
...... are the sides of the
inseribed polygons of 2% 25,
2% sides respectively, and
0B,,0B, ............ are the

respective apothegms.

Let OA=R,
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a(27) represent the side of the inscribed polygon of 27 sides,
b(27) the corresponding apothegm, p(27) its perimeter, and A(27)

its area.

For the square,
a(2)=RVv2; p(2)=R.22V/2;

b(22) = g V3, A@)=R22.

For the octagon,

in the two triangles AB,O and AB;A,
AB, OA
B;A, T AA,
L A AP=R.B/A,=R{R—b(22) }

=R{R— g— VQ}:%R‘Z. 2—v2)

or AA,=RV/2—V2=q(25)

PE3)=R. 2V 22 ooieeee e,

R 2 V3
b(2%)=0B,=+/0AT—AB; =\/ R (1—=7 )

= FCEYD) R/ VB

A(23)=1 perimeter X apothegm

=R.22A2—VZ1IRAV 2+ V3 = RE2 V3,

Similarly for the polygon of 16 sides,
a2 =RV 22+ /2
p(2)=R.2:0/ 22+ /2 ;
b(24)= g\/ m,

A(29)=R%2. V2 V2,

Q)

(2)

(3
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and for the polygon of 32 sides,
o(2)=RV 2—v 240/ 2+ V2,
)8 o Var
p(2)=R \/o_\/gwm
A(25)=R2.‘23\/2—\/2 V)

The general law is thus clear.

R
Also, A(?;”) = g - ]0(2"_1),

When the number of sides is increased indefinitely the apo-
thegm becomes obviously equal to the radius. Thus the limit of

Vo2 VT s

3. Tf perpendiculars are drawn to the radii at their extremi-
ties, we get regular polygons circumscribing the circle and also
the polygons described as in the preceding article, and of the
same number of sides.

In the next figure, let AR be a side of the inscribed polygon
and FG a side of the cireumseribed polygon.

Then from the triangles FIT and BTO,

OE _ FL FG

o1 — T AR’
AR
“FG=R—F57 or

The values of AR, and OI being known by the previous
article, FG is found by substitution.

The areas of the two polygons are to one another as
FG2:AE?, i e, as R?:0I%

* If # represent the limit, z = Votw, a quadratic which gives » =2, or
—1; the latter value is, of course, inadmissible.
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4. In the preceding articles it has been shown how regular
polygons can be obtained of 22, 23. . .27 sides. And if a polygon
of m sides be given, it is easy to obtain polygons of 2%
sides.

5. In the annexed figure, AB and CD are respectively the
sides of the inscribed and circumscribed polygons of # sides,
Take E the midpoint of CD and join AE, BE. AE and BE
are the sides of the inseribed polygon of 2n sides.

Fold AF, BG at right angles to AC and BD, meeting CD
in F and G.

Then FG is a side of the circumscribed polygon of 2% sides.

Join OF, OG and OE.

Let p, P be the perimeters of the inscribed and cireum-
scribed polygors respectively of n sides, and A, B their areas,
and p’, P’ the perimeters of the inscribed and circumscribed
polygons respectively of 2u sides, and A', B’ their aveas.

Then

p=n.AB, P=».CD, p'=2n. AR, P'=21TG.
Becanse OT bisects the £ COE and AB is parallel to CD,
CF _CO €O _CD

TR~ OB~ A0~ AB’
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CE _ CD+AB

FE~ T AB
o 4n.CE _ n.OD+n.AB
4n. FE n.AB ’
2P P+p
T
p = 2Pp.
P+yp
Again, from the similar triangles EIF and AHE,
EI _ EF
AH T AR

or AR*=2AH.EF;
402 AR =4, AB.EF,
or p'=~Pp.
Now, A=22AAOH, B=2rACOE
A'=24 AAOE, B'=4n AFOR.
The triangles AOH and AOE are of the same altitude,

AAOH OH
AAOE ~ OR
Similarly,
AAOE _ OA .
ACOE ™~ 0C
Again because AB is parallel to CD, %% = 8%
AAOH _AOE
AAOE ~ COE

A A —
K’ :B or A’ = \/AB
To find B/, because the triangles COE and FOE have the
same altitude, and OF bisects the angle COX,
ACOE _ CE _ OC+OE

AFOE ~ FE~  OE
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and OE = OA,
0C _OE _ AAOE
OA ~ OH ™ AAOH’
ACOE _ AAOB+ AAOH

and

AFOE~  AAOH
o . 2B A+ A
Multiplying both sides by 4, we get BT A
2AB
! — ———
. B= A+ A

6. Given the radius Rand apothegm 7 of a regular polygon,
to find the radius R’ and apothegm 7' of a regular polygon of
the same perimeter but of double the number of sides.

Let AB be a side of the first polygon, O its centre, OA the
radius of the circumseribed circle, and OD the apothegm. On
OD produced take OC=0A or OB. Join AC, BC. Fold OA'
and OB’ perpendicular to AC and BC respectively. Join A’ B’
cutting OC in D)’.  Then the chord A’ B’ is half of AB, and the
angle A'OB’ is half of AOB. OA’ and OD’ are respectively
the radius R’ and apothegm 1’ of the second polygon.

Now O’ is the arithmetical mean between OC and oD
and OA' is the mean proportional between OC and OT).

Sor' =3R4+ 7). and R = vRy.
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7. Now, take on OC, OK = OA and join A'E
Then A'D’ being less than A'C, and £ D'A’C being bisected
by A'E, _
1 1
ED’ is less than 5 CD/, 7.e., less than; CD

. Ry — r; is less than }1 (R — 7).

As the number of sides is increased, the polygon approaches
the circle of the same perimeter, and R and r become equal to
the radius of the circle.

That is,

R4+r+Ry—rm+Ry—m+

== the diameter of the circle = };)r

Al . .

"% R2=Rr or R o =R,

Ry

B
and R, Ry and so on.

Multiplying both sides

R. 1%11 ITTZ éi ......... = the radius of the circle:%.

8. The radius of the circle lies between R, and 7,, the sides

of the polygon being 4.27 in number; and = lies between

;2~ and é The numerical value of = can therefore be calcu-

lated to any required degree of accuracy by taking a sufficiently
large number of sides. ‘
The following are the value of the radii and apothegms
of the regular polygons of 4, 8, 16,...2048 sides.
4. =0500000 R =s4/2==0707107
8.y =0603558 R, =0153281

2048. 7= 0636620 Ry =0 636620

= = 3'14159........
T = 563690 31415
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9. If R” be the radius of a regular isoperimetrical polygon
of 4n sides

2 R (R+R)

R” -

2R
or in general

/ Ry
1 LV

R”H—l — \/ :"R’k—l

Rz 2

10. The radii R,, R,,......successively diminish, and the

. Ry
ratio E‘ is less than unity and equal to the cosine of a certain
1

angle a
Ii; _ /l +cosa @
Rg - zv ———2 == CO0S 2
R]c+ a

1
=C0S8 57—
I Qle—1

multiplying together the different ratios, we get

Rir1=R ¢ « os %
w+1=R; . cosa. cos 5, OS5 ... =t
imi « & a . sin2a
The limit of cos a cos ; ....cos , when k=00 is "—-=-
2 241 2a

a result known as Fuler's Formula.

11. It was demonstrated by Karl Friedrich Gauss (1777—
1855) that the only regular polygons which can be constructed
by elementary geometry are those the number of whose sides
is 2m(27+1) where m and » are positive integers and 2741
is a prime number. The first two numbers of this description
are 5 and 17. We shall show here how polygons of 5 and 17
sides can be described.

The following theorems are required :—

(1) If C and D are two points on a semi-circumference
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ACDB, and if C' be the image of C with respect to AB, and R

the radins of the circle,
AC.BD=R.(CD—CD)...ce.oeevrveirineiennnnnld
AD.BC=R.(C'D+CD).ccceviinrriinn, L0
ACBC=R.CC ' .. s i L

(2) Let the circumference of a circle be divided into an odd
number of equal parts, and let AO be the diameter through one
of the points of section A and the midpoint O of the opposite
arc. Let the points of section on each side of the diameter
be named Ay, Ay, Ay o Agand A/ A Al A',
beginning next to A.

Then OA. OA,. O4A,.. .. OA,=R". iv.
and OA,. OA,. OA,. ... OA,lzRg.

12. Tt is evident that if the chord OA, is determined, the
angle AOA, is found and it has only to be divided into 2» equal
parts, to obtain the other chords.

18. Let us first take the pentagon.

By theorem iv.
OA,. OA,=R2
By theorem 1.
R(0A;—0A,)=04,. 0A,=R?
. 0A,—-0A,=R

= OALZS(«/E-H)
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and OA,= l)—{ (\/5- 1).
Hence the following construction.
Take the diameter ACO, and drvaw the tangent AT. Take
D the midpoint of the radius OC and AF=0C.
On OC as diameter describe the circle CE'AE.
Join FD cutting the inner circle in K and K/
Then FE'=0A,, and FE=0A4,.
14. Let us now consider the polygon of seventeen sides.
*Here OA;. OA,. OA; OA,. OA, OAy OA, OAy=RS
OA,. OA, OA, OAg=R*
and OA,. OA;. OA, OA.=R*
By theorems i. and i1
OA;. OA,=R (0A;4+04y)
0A,. OA=R (0A—04,)
0A; 0A;=R (03,4 0A4Ay)
OA4 OA-=R (OA,—O0A))
‘Suppose
OA,+0A,=M, OA,—OA.=N,
0A,+0A;=P, OA,—0OA,=Q.
Then MN=R?and PQ=R"
Again by substituting the values of M, N, P and Q in the
formulee ‘
MN=R?* PQ=R?
and applying theorems 1 and il. we gt
(M--N)—(P—Q)=R
Also by substituting the values of M, N, P and Q in the
above formula and applying theorems i. and ii. we get
(M—N) (P—Q)=4R"
Hence M—N, P—Q, M, N, P and Q are determined.
Again OA,+0OA=P
OA,. OAg=RN.
Hence OAg 1s determined.

* The principal steps are given. For a full exposition see Catalan’s
Theoremes et Problemes de Geometrie Klementaire.
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15. By solving the equations we-get
M—N=!R (1++17)
P—Q=1R (—1+V17)
P=1R (—1+ VI7+4/34-217)
N=1R (—1—VI7+/34+2V17)
OAy=1R[—1+ 1744/ 34217
o/ 1748V T4/ 11026/ 17—dn/ 34+ 2V 17 ]
=1R[ 1+ V174434217

oV 1743V 1104387

16. The geometrical construction is as follows :

6

61
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Let BA be the diameter of the given cirele; O its centre
Bisect OA in C. Draw AD at right angles to OA and take
AD=AB. Join CD. Take E and B in CD and on each side
of it so that CKE = CE' = CA.

Bisect KD in (+ and B'D in G'. Draw DI perpendicular to
CD and take DEF = OA.

Join FG and FG'

Take H in FG and H' in FG’ produced so that GH = EG
and G'H' = G'D.

Then it 1s evident that

DK =M —N
DE'=P - Q

also FH= N - (DE + FH) FH = DI = R?
FH'=P - (FH' — DE’) FH = DF? = R*

Again in DF take K such that FK = FH

Draw Kl perpendicular to DI and take L in KL such that
FL is perpendicular to Dl

Then FI2=DF. FK=RN.

Agnin

Draw H'N pérpel’ldicular to FH'
and take HN =FL.
Draw NM perpendicular to NH'.
Find M in NM such that H'M is perpendicular to FM.
Draw MP’ perpendicular to FH'.
Then P'H'. FP' =P'M?=FI1.2
=RN
But FP' +P'l{'="¢
oo PE=04



CHAPTER XIlI.
GENERAL PRINCIPLES.

In the preceding pages we have adopted several processes,
e.f., bisecting and trisecting finite lines, bisecting rectilineal
angles and dividing them into other equal parts, drawing
perpendiculars to a given line. &c. Let us now examine the
theory of these processes.

9. The general principle is one of conyruence. Figures and
straight lines are said to be congruent, if they ave identically
equal, or equal in all respects.

In doubling a piecce of paper upon itself, we obtain the
straight edges of two planes coinciding with each other. This
line may also be regarded as the intersection of two planes if
we consider their position during the process of folding.

In dividing a finite straight line or angle into a number of
equal parts, we obtain a number of congruent parts. Equal
lines and equal angles are congruent.

3. Let AB be a given finite line, divided into any two
R ~ parts -in C. Take O the midpoint by
I L& 8 ) doubling the-line on itself. Then OC is

half the difference between AC and BC.
Double AB and take D in AO corresponding to C. Then CD
is the difference between AC and BC and it is bisected in O.
As Cis taken nearer to O, CO diminishes and at the same time
CD diminishes at twice the rate. This property is made use of
in finding the midpoint of a line by means of the compasses.

4, The above observations apply also to an angle. The
Iine of bisection is found easily by the compasses by taking the
point of intersection of two circles.

5, In the line BOA, segmeunts to the right of O may be
considered positive and the segments to the left of O may he
considered wegative. That is, a point movirg from O to A
moves positively, and a point moving in the opposite dircetion
OB moves negatively.



64 GENERAL PRINCIPLES. [cEAD.

DA=0A—-O0D.
O0C= -—-0B—(—CB
= -0B+CB

= —(0B—CB).

6. 1f OA, onearm of an angle AOP be fixcd and OP be
considered to revolve round O, the angles which it makes with
OA are of different magnitudes. All such angles formed by
OP revolving in the direction opposite to that of the hands of
a watch are regarded positive. The angles formed by OP re-
volving in an opposite direction are regarded neguiive.

7. After one revolution, OP coincides with OA. Then the
angle described may be called an angle of rotation *= four
right angles.  When OP has completed half the revolution, it
is in a line with OAB. Then the angle described may be
called an angle of continuation *= two right angles. When
OP has completed quarter of a revolution, it is perpendicular
to OA. All right angles are equal in magnitude. So are the
angles of continuation and revolution.

8. Two lines at right angles to each other form four
congruent quadrants. Two lines otherwise inclined form
four angles, of which two vertically opposite ones are congruent.

9. The position of a point in a plane is determined by its
distance from each of tiwo lines taken as above. The distance
from one line is measured parallel to the other. In Analytical
Geometry, the properties of plane tigures are investigated by
this method. The two lines are called «wes ; the distances of the
point from the azes are called co-ordinates, and the intersection
of the axes is called the origin. This method was invented by
Descartes in 1637 'A.D. 1t has greatly helped modern research.

10, 1f AOB and COD be two axes, distances measured in
the direction of OA, .e., to the right of COD are positive, while
distances measured to the left of COD are negative. Similarly
with reference to AOB, distances measured in the direction of
OC are positive, while distances measured in the dircction of
OD are negative.

% These terms are adopted by Olaus Henrici, Ph.D., F.R.S.
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11. Awial syumetry is defined thns:—If two figures in the
same plane can be made to coincide by turning the one about a
fixed line in the plane through an angle of continuation, the
two figures are said to be symmetrical with regard to that line
as axis of symmetry.

12.  Central symmetry is thus defined :—If two figures in the
same plane can be made to coincide by turning the one about
a fixed point in that plane through an angle of continunation, the
two figures are said to be symmetrical with regard to that
point as centre of symmetry.

In the first case the revolution is outside the given plane,
while in the second it is in the same plane.

If in the above two cases, the two figures are halves of one
figure, the whole figure is said to be symmetrical with regard
to the axis or centre-—these are called awts ov centre of symmetry
or simply awis or centre.

13, Now, in
the quadrant AOC
make a triangle
PQR. Obtain its
image in the quad-
rant COB by fold-
ing on the axis
COD. Againobtain.
images of the two
triangles in the
fourth and third
quadrants. Tt 1s
seen  that  the
angles in adjacent
quadrants possess
azial  symmetry,
while the triangles
in alternate qua-
drants possess cen-
tral symmetry.
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14, Regular polygons of an odd number of sides possess
arial symmetry, and regular polygons of an even number of
sides possess cenfral symmetry as well.

15, If a figure has two axes of symmetry at right angles

to each other, the point of intersection of the axes is a ceutre
of symmetry. This obtains in regular polygons of an even
number of sides and certain curves, such as the circle,
ellipse, hyperbola, and the lemniscate; regular polygons of an
odd number of sides may have more axes than one, but no two
of them will be at right angles to each other. If a sheet of
paper -is folded double and cut, we obtain a piece which has
astal symmetry, and if it is cut fourfold, we obtain a piece
which has central symmetry as well.

16. Parallelograms have a centre of symmetry. A quadri-
lateral of the form of a kite, or a trapezium with two opposite
sides cqual and equally inclined to either of the remaining
sides, have also a centre of symmetry.

17. The position of a point in a plane is also determined by
its distance from a fixed point and the inclination of the line
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joining the two points to a fixed line drawn through the fixed
point.

I£ OA De the fixed line and P the given point., the length
PO and 2« AOP, determine the
position of P. O is the pole, OA is
the prime-vector, OP the radius vector
and £ AOP the vectorinl angle. OP
and £ AOP are called polur co-
0. ’ A ordenates of P.

18. The image of a figure symmetrical to the axis OA may
be obtained by folding through the axis OA. The radii
vectors of corresponding points are equally inclined to the axis.

19. Let ABC he a triangle. Produce the sides CA, AB,
BC to D, X, Frespeectively.
Sappose a person to stand at A

P

with face towards D and then
to proceed from A to B, B to C,
and C to A. Then he succes-
sively describes the angles
DAB, LBC, FCD. Having

come to his original position A,

he has completed an angle of
rotation, i.e. four right angles. The three exterior angles ave
thus together equal to four right angles.

20. The same argument applies to any convex polygon.

21. Suppose the man to stand at A with his face towards
C, then to turn in the direction of AB and proceed along AB,
BC, and CA.

In this case, the man completes an angle of continnation,
1.6, two right angles. He successively turns through the
angles CAB, EBC and FCA. Therefore £ EBF + 2 FCA —
£ CAB=two right angles.

22, This property is made use of in turning engines on
the railway. An engine standing upon DA with its front



68 GENERAL PRINCIPLES. [cHAP.

towards A is driven on to CF, with its front towards F. The
motion is then reversed and it goes backwards to EB. Then
it moves forward along BA on to AD. The engine has suc-
cessively described the angles ACB, CBA and BAC. There-
fore the three interior angles of a triangle are together equal to
two right angles.

23. The property that the three interior angles of a
triangle are together equal to two
right angles is illustrated as follows
by paper folding.

Fold CD perpendicular to AB.
Bisect. AD, BD in E and F res-
pectively. Fold EG, FH perpendi-
cular to AD, BD) meeting AC, and
BC in G and H. Join GD, HD.

By folding the corners on ¥&, FH and GH we find that the
angles A, B, C of the triangle are equal to the angles ADG,
BDH and GDH respectively, which together make up two
right angles.

24, Take any line A B C. Draw perpendiculars to A, B, C
. oot the points A, B and €. Take

D points I, K, F in the respective per-
pendiculars equidistant from their

A feet. Thenitis easily seen by super-
/ position and proved by equal tri-
angles that DK is equal to AB and

/ G perpendicular. to AD and BE, and
C that EF=BC and perpendicular to

A 8
BE and CF. Now AB and DE are the shortest distances
between the lines AD and BE, and it is constant. Therefore

AD and BE can never meet, 7.e., they are parallel. The lines
which are perpendicular to the same line are parallel.
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25. The two angles BAD and ABE arc together equal to
two right angles. If we suppose the lines A and BE to
moveinwards about A and B, they will meet and the interior
angles will be less than two vight angles. They will not meet

if produced backwards. This is embodied in the much abused
12th axiom of Fuclid’s Elements.

26. It AGH be any line cutting BE in G and CF in H,
then
2 DAG=the alternate £ AGB.
- each is the complement of BAG,
and £ KGH=the interior and opposite angle DAG.
.. they are each=AGB.

Also the two £ s DAG and AGE are together equal to two
right angles.

27. Take a line AB and mark off equal segments succes-
' sively on it AB, BC, CD, DE.....
Erect perpendiculars to AE at
B, C, D, E........Let a line Ae

¢ cut the perpendiculars in b, ¢,
/ d, e, ........Then Ab, be, cd, de,.....
are all equal.

If AB, BC, CD, DE be un-
equal, then
AB:BC::Ab:be.
BC:CD::bc:ed and so on.

28, If ABCDE...... be a polygon. similar polygons may be
obtained as follows.

-
b

C D E F

gl
B

p=3

Take any point O within the polygon, and join OA, OB,

Take any point @ in OA and drvaw «b, be, ed,... .. . parallel to
AB, BC,CD........ ... respectively. Then the polygon abed... ...

will be similar to ABCD ... The polygons so described round
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a common point are in perspective. The point O may also lie

outside the polygon. Tt is called the centre of perspective.

29, To divide a given line into 2, 3, 4, 5......... equal parts.
B WD Let AB be the given line. Draw
S AC, BD at right angles to AB on

4

2 A2=2B.

Now produce AC
EF, EG.........=AC
DE, DF, DG...... ..

opposite sides and make AC=BD.
Join CD cuttne AB in 2. Then

and take CL,

or BD. Join

F E © A cutting ABin 3,4, 5 . .. ...

Then from similar triangles.
B3:A3 :: BD:AE.
. B3:AB:: BD:AF.
1:3.
Similarly
B4:AB ::1:4

and so on.

If AB=1.
1
A2=_1 .
1.2
23 =" ! —
2.3’
3d= 17;
3.4
! 1
n II,-I-l :m
But A2+234+3 4 is ultimately=AB.
L 1 1

T.ates
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1 |
Ol‘ Iazzlj,
11 1
DTET gy
1_,_# 1 1
n on+1" w(n+l1)
Adding
1 1 1 1
BT ELEN [
RN S G et
1 1 1 1
[ i — e = ] —
Tl 203 +(n—l)n "
The Hmit of 1 — ! when »is wis 1.

H.

30, The following simple contrivance may be used for
dividing & line into a number of equal parts.

Take a rectangular piece of paper, and mark off n equal
segments on each or one of two adjacent sides. Fold through
the points of section so as to obtain perpendiculars to the sides.
Mark the points of section and the corners 0, 1, 2,......n. Sup-
pose it is required to divide the edge of another piece of paper
AB into % equal parts Now place AB so that A or B may lie
on 0, and B or A on the perpendicular through s.

In this case AB must be greater than ON. But the smallev
side of the rectangle may be used for smaller lines.

The points where AB crosses the perpendiculars are the
required poiuts of section.

31, Centre of meun position. 1f aline AB contains (m+n)
equal parts, and it is divided at O so that AC contains m of

these parts and CB contains n of them ; then if from the points
A, C, B perpendiculars AD, CF, BE be let fall on any line,

m BE4 AD=(m+u). CF.
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Now, draw BGH parallel to ED cutting CFin G and AD
in H. Suappose through the points of division of AB lines are
drawn parallel to BH. These linés will divide AH into (m +n)
equal parts and CG into » equal parts.

cone AH=(m+2) CG,
and since DH and BE are each = GF,
n. HD 4+ 0. BE=(m+n) GF.

Hence, by addition

n. AD+m. BE=(n+x2). CF.

C is called the centre of mean position, or the mean centre of
A and B for the system of multiples m and ».

The principle can be extended to any number of points, not
in a line. Then if P represent the feet of the perpendiculars
on any line from A, B, O, &, if a, b, c......... be the correspond-
ing multiples, and if M be the nean centre

a. AP+-0. BP+c. CP.........
=(u+b+e+.........). MP.

1f the multiples are all equal or unity,

we get

AP+DBP+CP+......... =n.MP
n being the number of points.

32. The ceutre of meun position of a number of points is
obtained thus.  Bisect the line joining any two points A, B in
G, join G to a third point C and divide GC in H so that
GH=1% GC; join H to a fourth point D and divide HD in K
so that HK=1 HD and so on: the last point found will be the
centre of mean position of the system of points.

33. The notion of mean centre or centre of mean position
is derived from Statics, because a system of material points
having their weights denoted by a, b, ¢ ..... ,and placed at
A, B C. would balance about the mean centre M, if free to
rotate about M under the action of gravity.

The wean centre Las therefore a close relation to the centre of
gravity of Statics.
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34. The mean centre of three points not in a line, is the
point of intersection of the medians of the triangle formed by
joining the three points. This is also the centre of gravity or
mass centre of a thin triangular plate of uniform density.

35. If Mis the mean centre of the points A, B, C, &ec., for
the corresponding multiples a, b, ¢, &c., and if P is any other
point, then

a. AP?+b. BP?+c. CP2+ ...
=a. AM?+b. BM?+c. CM2+ ...
+PM2(a+b+c+ ...... )

Hence in any regular polygon, if O is the in-centre or circum-
centre and P is any point

AP24+BP?* ... =0A?+0B%+...... +n . OP?
=n .(R?+0P?)
Now AB?4+AC*+AD24 ... =2n . R?
Similarly
BA2+BC2+BD%+ ... =2n R?
CA?+CB*+CD2+...... =2n RA2

Addin
¢ 20 (AB2+AC2+AD+ ... )=n.2r.R?

AB2+AC24-AD*+ ........ ...=n% . R%

36. The sum of the squares of the lines joining the mean
centre with the points of the system is a minimum.

If M be the mean centre and P any other point not belonging
to the system,

IPA?=3MA?+ 3PM?
.. SPA?is the minimum when PM=0, ¢.e., when Pis the mean
centre.

37. Properties relating to concurrency of lines, and colli-
nearity of points can be tested by paper folding. Some instan-

ces are given below : —
(1) The medians of a triangle are concurrent. The com-

mon point is called the centroid.
7
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(2) The perpendiculars of a triangle are concurrent. The
common point is called the orthocentre. -

(3) The perpendicular bisectors of the sides of a triangle
are concurrent. The common point is called the circum-centre.

(4) The bisectors of the angles of atriangle are concurrent.
The common point is called the ¢n-centre.

(5) Let ABCD be a parallelogram and P any point.
Through P draw GH and EF parallel to BC and AB respec-
tively. Then the diagonals EG, HF, and DB are concurrent.

(6) If two similar unequal rectineal figures are so placed
that their corresponding sides are parallel, then the joins of
corresponding corners are concurrent. The common point is
called the centre of similarity.

(7) If two triangles are so placed that their corners are two
and two on concurrent lines, then their corresponding sides
intersect collinearily. This is known as Desargues’ theorem.
The two triangles are said to be in perspective. The point of
concurrency and line of collinearity are respectively called the
centre and amis of perspective.

(8) The middle points of the diagonals of a complete quadri-
lateral are collinear.

(9) If from any point on the circumference of the circum-
circle of a triangle, perpendiculars are dropped on its sides,
produced when necessary, the feet of these perpendiculars are
collinear. This line is called Simson’s line.

Simson’s line bisects the join of the orthocentre and the
point from which the perpendiculars are drawn,
(10) In any triangle the orthocentre, circwmcentre, and
centroid are collinear. -
The midpoint of the join of the orthocentre and circum-
centre is the centre of the nine-points circle, so called because
it passes through the feet of the altitudes and medians of the
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triangle and the midpoints of that part of each altitude which
lies between the orthocentre and vertex.

The centre of the nine-points civcle is twice as far from
the orthocentre as from the centroid. This is known as
Poncelet’s theorem.

(11) If A, B,C, D, K, ¥, are any six points on a circle
which are joined successively in any order, then the intersec-
tions of the first and fourth, of the second and fifth, and of the
third and sixth of these joins (produced when necessary) are
collinear.

(12) The join of the vertices of a triangle‘ with the points
of contact of the in-circle are concurrent. The same property
holds for the ex-circles. ,

(18) The internal bisectors of two angles of a triangle,
and the external bisector of the third angle intersect the oppo-
site sides collinearly.

(14) The external bisectors of the angles of a triangle
intersect the opposite sides collinearly.

(15) If any point be joined to the vertices of a triangle,
the lines drawn through the point perpendicular to those joins
interséct the opyosite sides of the triangle collinearly.

(16) If on an axis-of symmetry of the congruent trian-
gles ABC, A'B'C' a point O be taken, A’O, B'O, and C'O
intersect the sides BC, CA and AB collinearly.

(17) The points of intersection of pairs of tangents to a

¢ircle at the extremities of chords which pass through a given
point are collinear.

(13) The isogonal conjugates of three concurrent lines AX,
BX, CX with respect to the three angles of a triangle ABC
 are concurrent.

[Two lines AX, AY are said to be isogonal conjugates with
respect to an angle BAC, when they make equal angles with
its bisector. ]
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(19) If in a triangle ABC, the lines AA', BB, CC'
drawn from each of the angles to the opposite sides are concur-
rent, their isotomic conjugates with respect to the correspond-
ing sides are also concurrent.

[The lives AA/, AA” are said to be isofomic conjugates, with
respect to the side BC of the triangle ABC, when the intercepts
BA’ and CA” are equal.]

(20) The three symmedians of a triangle are concurrent.
[The isogonal conjugate of a median AM of a triangle is
called a symmedian.]




CHAPTER XIIl.
THE CONIC SECTIONS.

Secrion I.—THE CIrCLE.

1, Anpiece of paper can be folded in numerous ways through
a common point. Points on each of the lines so taken as to be
equidistant from the common point will lie on the circumference
of a circle, of which the common point is the centre. The
circle is the locus of points equidistant from a fixed point, the
centre.

2. Any nomber of concentric circles can be drawn. They
cannot meet each other.

3. The centre may be considered as the limit of concentric
circles described round it as centre, the radins being indefi-
nitely diminished.

4, Circles with equal radii are congruent and equal. .

5. The curvature of a circle is nniform thronghout the cir-
- cumference. A circle can therefore be made to slide along
itself by being turned about its centre. Any figure connected
with the circle may be tarned about the centre of the circle
without changing its relation to the circle. :

6. A straight line can cross a circle only in two points.

7. Every diameter is bisected at the centre of the circle.
Tt is equal in length to two radii. All diameters, like the radii,
are equal.

8. The centre of a circle is its centre of symmetry, the
extremities of any diameter being corresponding points.

9. Every diameter is an awis of symmetry of the circle, and
conversely.

10. Propositions 8 and 9 are true for systems of concentric
circles.
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11. Every diameter divides the circle into two equal halves
called semicircles.

12. Two diameters at right angles to each other divide the
circle into four equal parts called quadrants.

13. By bisecting the right angles contained by the diame-
ters, then the half right angles, and so on, we obtain 2" equal
sectors of the circle. The angle between the radii of each

)

v ks

LA 2
sector is anf a right angle or ST

14, As shewn in the preceding chapters, the right angle
can be divided also into 3, 5, 9, 10, 12,15 and 17 equal parts.
And each of the parts thus obtained can be subdivided into
27 equal parts.

15. A circle can be insertbed in a regular polygon, and a
circle can also be circumseribed vound it. The former circle
will touch the sides at their midpoints.

16, Equal arcs subtend equal angles at the centre; and
conversely. This can be proved by superposition. If a circle
be folded upon a diameter, the two semicircles coincide. Hvery
point in one semi-circumference has a corresponding point
in the other, below it.

1%. Auny tworadii ave the sides of an sosceles triangle, and the
chord which joins their extremities is the base of the triangle.

18. A radius which bisects the angle between two radii is
perpendicular to the base chord and also bisects it.

19. Given one fixed diameter, any number of pairs of radii
may be drawn, the two radii of each set being equally inclined
to the diameter on each side of it. The chords joining the
extremities of éach pair of radii are at right angles to the
diameter. The chords are all parallel to one another.

20. The said diameter bisects all the chords as well as the
arcs standing upon the chords, i.e., the locus of the midpoints
of a system of parallel chords is a diameter.
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21. The perpendicular bisectors of all chords of a circle
pass through the centre.

22. Equal chords are equidistant from the centre.

23, The |extremities of two radii which are equally inclined
to a diameter on each side of it, are equidistant from every
point in the diameter, Tence, any number of circles can be
described passing through the two points. In other words, the
locus of the centres of circles passing through two given points
is the straight line which bisects the join of the points at right
angles.

24, Let CC' be a chord perpendicular to the radius OA.
Then the angles AOC and AOC' are equal. Suppose both move
on the circnmference towards A with the same velocity, then
the choed CC' is always parallel to itself and perpendicular to
OA. TUltimately the points C, A and C' coincide at A, and
CAC' is perpendicular to OA. A is the last point commoen
to the chord and the circamference. CAC’ produced becomes
ultimately a tangent to the circle.

25. The tangent is perpendicular to the diameter through
the point of contact; and conversely.

26, 1f two chords of a circle are parallel, the arcs joining
their extremities towards the same parts are equal. So are
the arcs joining the extremities of either chord with the
diagonally opposite extremities of the other and passing through
the remaining extremities. This is easily seen by folding on
the diameter perpendicular to the parallel chords.

27. The two chords and the joins of their extremities to-
wards the same parts form a trapezium which has an axis of
symmetry, viz., the diameter perpendicular to the parallel
chords. The diagonals of the trapezium intersect on the dia-
meter. It is evident by folding that the angles between each
of the parallel chords and each diagonal of the trapezium are
equal. Also the angles upon the other equal arcs are equal.
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28. The angle subtended at the centre of a circle by any
arc is double the angle subtended by it at the circumference.

Let AOB and ACB be the
angles standing upon the arc
AB, one at the centre O and

the other at the circumference

ACB.

From O draw OD, OE per-
\ pendicular to the chords AC,
BC, and mesting the circum-

ference in F and G.

Then £ FOG = 2z ACB.
But
arc FG=CGF—CG
=1AC~-1BC
=1 AB.
. £FOG =1 £AOB.
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29. The angle at the centre being constant, the angles snb-

tended by an arc at all points of the circumference are equal.
30. The angle in a semicircle is a right angle.

31, If AB be a diameter of a circle, and CD a chord at
right angles to it, then ACBD is a quadrilateral of which AB
is an axis of symmetry. The angles ACB and ADB being
each a right angle, the remaining two angles CBD and CAD
are together equal to two right angles. If A’ and B’ be any
other points on the arcs CAD and CBD respectively, the
Z CAD = ZCA'D and 2 CBD = £ CB'D, and the two angles
£ CA’D and CB'D are together equal to two right angles.
Therefore, also, the angles A'CB’ and B'DA' are together equal
to two right angles.

Conversely, if a quadrilateral has two of its opposite angles
together equal to two right angles, it is inscriptible in a circle.

82. The angle between the tangent to a circle and a chord
which passes through the point of contact is equal to the angle
at the circumference standing upon that chord and having its
vertex on the side of it opposite to that on which the first
angle lies.

Let AC be a tangent to the circleat A and AB achord. Take
O the centre of the circle and join OA, OB. Draw OD per-
pendicular to AB.

Then £CAB=2A0D = $£A0B.
33. Perpendiculars to the diameters at their extremities

touch the circle at the extremities. The line joining the centre

and the point of intersection of two tangents bisects the angles



82 THE CIRCLE. [cHAP.

between the two tangents and between the two radii. It
also bisects the join of the points of contact. The tangents
are equal. This is seen by folding throngh the centre and the
point of intersection of the tangents.

Let AC, AB be two tangents and ADEOF the line through
the intersection of the tangents A and the centre O, cutting
the circle in D and F and BC in E.

AQO the A M.

AB?=AD.AF=AP.AR.
AB*>=0A.AE

AD.AF _ 2AD.AF

SAB= G =iD AT

Similarly, if any other chord through A be obtained cutting
the circle in P and R and BC in Q, then AQ is the H.M. and
AC the G.M. between AP and AR.
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34, Told a right angled triangle OCB and CA the perpendi-
cular on the hypotenuse. Take D in AB such that OD=0C.

Then OA. OB=0C?=0D?
and OA:0OC :: OC : 0B
OA : 0D :: OD: OB.
A circle can be described with O as centre and OC or OD ag
radins.

The points A and B are wnverses of each other with reference
to the centre of inversion O and the circle of tnversion CDE.

Hence when the centre is taken as the origin, the feet of the
ordinates of a circle have for their inverses the points of inter-
section of the tangent with the respective axes.
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35. Fold FBG perpendicular to OB. Then the line FBG
is called the polar of point A with reference to the polar circle
CDE and polar centre O; and A is called the pole of FBG.
Conversely B is the pole of CA and CA is the polar of B with
reference to the same circle.

36. Produce OC to meet FBG in F, and fold AH perpendi-
cular to OC.

Then F and H are inverse points.

AT is the polar of F, and the perpendicular at ¥ to OF is
the polar of H.

37. The points A, B, ', H, are concyeclic.

That is, two potnts and their tnverses are concylic ; and con-
versely.

Now take another point G on FBG. Join OG, and fold AK
perpendicular to OG. Then K and G are inverse points with
reference to the circle CDE.

38, The points F, B, G are collinear, while their polars
pass through A.

Hence, the polars of collinenr points are concurrent.

39. Points so situated that each lies on the polar of the
other are conjugate points, and lines so related that each passes
through the pole of the other are conjugate lines.

A and F are conjugate points,'so are A and B, A and G.

The point of intersection of the polars of two points is the
pole of the join of the points.

40. As A moves towards D, B -also moves up to it. Finally
A and B coincide and FBG is the tangent at B.

Hence the polar of any point on the circle is the tangent at
that point.

41, As A moves back to O, B moves forward to infinity. The
polar of the centre of inversion or the polar centre is the line
at infinity perpendicular to the axes.
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42, The angle between the polars of two points is equal to
the angle subtended by these points at the polar centre.

48, The circle described with B as centre and BC as radius
cuts the circle CDE orthogonally.

44, Bisect ABin L and fold LN perpendicular to AB. Then
all circles passing through A and B will have their centre
on this line. These circles cut the circle CDE orthogonally.
The circles round the quadrilaterals ABFH and ABGK are
such circles. AF and AG are diameters of the respective
circles. Hence if two circles cut orthogonally the extremities
of any diameter of either are conjugate points with respect to
the other.

45, The points O, A, H and K are concyclic. H, A K
being inverses of points on the line FB@, the inverse of a line
is a circle through the centre of inversion and the pole of the
given line, these points being the extremities of a diameter;
and conversely.

46. If DO produced cuts the circle CDE in D', D and D
are harmonic conjugates of A and B. Similarly, if any line
through B cuts AC in A’ and the circle CDE in d and ¢/, then
d and d’ are harmonic conjugates of A’ and B.

47. Fold any line LM=LB or LA and MO’ perpendicular
LM meeting AB produced in O'.

Then the circle described with centre O' and rading O'M cuts
orthogonally the circle described with centre L and radius LM.

Now, OL2=0OE?+LE?
and  O'L2=0'M2?+LM?2

s OLA—0'L2=0E*—0'M2,

s LN is the radical axis of the circles O (OC) and O'(O'M).

By taking other points in the semicircle AMB and repeating

the same construction as above, we get two infinite systems
8
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of circles co-axial with O(OC) and O'(0'M), viz., one system
on each side of the radical axis, LN. The poini circle of each
system is a point, A or B, which should be regarded as an
infinitely small circle.

The two infinite systems of circles arve to be regarded as one
co-axial system, the circles of which range from infinitely large
to infinitely small— the radical axis being the infinitely large
circle, and the limiting points the infinitely small. This sys-
tem of co-axial circles is called the limiting point species.

If two circles cut each other their common chord is their
radical axis. Therefore all circles passing through A and B are
co-axial. This system of co-axial circles is called the commen
point species.

48, Take two lines OAB and OPQ. From two points A and
B in OAB draw AP, BQ perpendicular to OPQ. Then circles
described with A and B as centres and AP and BQ as radii will
touch the lins OPQ at P and Q.

Then OA : OB :: AP : BQ.

This holds whether the perpendiculars are towards the same
or opposite parts. The tangent is in one case direct, and in the
other tranverse.

In the first case, O is outside AB, and in the second it is
between A and B. In the former itis called external centre
of similitude and in the latter the internal centre of similitude.

49, The line joining the extremities of two parallel radii of
the two circles passes through their external centre of similitude,
if they are in the same direction, and through their internal
centre, if they are turned in opposite directions.

50. The two radii of one circle drawn to its points of inter-
section, with any line passing through either centre of simili-
tude, are respectively parallel to the two radii of the other
circle drawn to its intersections with the same line.
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51. All secants passing through a centre of similitude of

two circles are cut in the same ratio by the circles.

52, If R,r, and S,‘s, be the points of intersection, R,S, and
s, being corresponding points,
AP
BY

Hence the inverse of a circle, not through the centre of
inversion is a circle.

OR.0s=0r.0S=0Q?%

The centre of inversion is the centre of similitude of the
original circle and its inverse.

The original circle, its inverse, and the circle of inversion are
co-axial.

53. The method of inversion is one of the most important in
the range of Geometry.. It was discovered jointly by Doctors
Stubbs and Ingram, Fellows of Trinity College, Dublin, abount
1842. Tt was employed by Sir William Thomson in giving

geometrical proofs of some of the most difficult propositions
in the mathematical theory of electiicity.

Secrioy II.—Tue PArsBOTA.

1. Aparabola is the curve traced out by a point which moves
in one plane in such a manuer that its distance from a given

point is always equal to its distance from a given straight
line.
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2. The above figure shows how a parabola can be marked on
paper. Theedge of the square XF is the directrix, A the vertex,
and S the focus. Fold through XAS and obtain the axis.
Divide the upper half of the square into a number of sections by
lines parallel to the axis. These lines meet the directrix in a
number of points. Fold by laying each of these points on the
focus and mark the point where the corresponding horizontal
line is cut. The points thus obtained lie on a parabola. The
folding gives also the tangent to the curve at the point, e.g., PF.

3. SL which is at right angles to AS is called the Semi-'
Latus Rectum.

4, When points on the upper half of the curve have been
obtained, corresponding points on the lower half are obtained
by doubling the paper on the axis and pricking through them.
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5. When the axis and the tangent at the vertex are taken
as the axes of co-ordinates, and the vertex as origin, the
equation to the parabola becomes

y?==daw or PN?=4AS AN,

The parabola may be defined as the curve traced by a point
which moves in one plane in such a manner that the square of
its distance from a given straight line waries as its distance
from another straight line; or the ordinate is the mean pro-
portional between the abscissa, and the Latus Rectum which
is equal to 4AS. Hence the following construction.

L LIN

Take AT in SA produced = 4 AS.
Bisect TN in C.
A Take M in AM such that CM=CN or CT.
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Fold through M so that MP may be at right angles to AM.
Let P be the point where MP meets the ordinate of N.
Then P is a point on the cnrve.

6. The subnormal =2AS or SX and SP=SG=8T.

These properties suggest the following construction.

Take N any point on the axis.

On the side of N remote from the vertex take NG=2AS
or SX.

Fold NP perpendicular to AG and find Pin NP such that
SP==8G.

Then' P is a point on the curve.

A circle can be described with S as centre and SG, SP and
ST as radii.

The double ordinate of the circle is also the double ordinate
of the parabola, 7.e., P describes a parabola as N moves along
the axis.

7. Take any point N’ between A and S. Fold RN'P’ at
right angles to AS. -
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Take R so that AR=AS.

Fold RN perpendicular to AR, N being on the axis.
Fold NP perpendicular to the axis.

Now, take AT in AX=AN"

Take P’ in RN’ so that SP'=S8T.

Fold through P'S cutting NP in P.

Then P and P’ are points on the curve.

8. N and N’ coincide when PSP’ is the Latus Rectum.
As N’ recedes from S to A, N moves forward from S to infinity.
At the same time, T moves from X to A, and TV (AT'=AN)

moves in the opposite direction from X to infinity.

9. To find the avea of a parabola bounded by the axis and

an ordinate.

Complete the rectangle ANPK. Let AK be divided into =
equal portions of which suppose Am to contain » and mn to be
the (r4+1)"*. Draw mp, ng at right angles to AK meeting the
curve in p, ¢, and pn' at right angles to ng. The curvilinear
area APK isthe limit of the sum of the series of rectangles
constructed as mn' on the portions corresponding to mn.

But [ Jpn:[___JNK ::pmmn:PK.AK.
and, by the properties of the parabola,
pm : PK :t Am? : AK?
o a?
and mn: AK ::1:n
sopmemn : PRIAK 29?0 nB

T g



92 THE ELLIPSE. [cmAP.

Hence the sum of the series of [ |
P23 4+ (m—1)?
= e

n—1)n (2n—1 S
=T x [INK

x [ _INK

_ 2mP—3nd4n

= 123w X[ —INK
1 1
— 1 __ i S
- (" ot 6ng> x[_]NK
=+of[ ] NK in the limit, ¢.e., when n is o« .

s The durvilinear area APK=L%of [T ]1NK
and the parabolic area APN=2of [~ ] NK.

10. The same proof applies when any diameter and its
ordinate are taken as the boundaries of the parabolic area.

Seorroxy III.—TarE Enuipse.

1. An ellipse is the curve traced by a point which moves
is one plane in such a manner that its distance from a given
point is in a constant ratio of less inequality to its distance
from a given straight line.

Let S be the focus, EX the directrix, and SX the perpendi-
cular on EX from S. Let SA : AX be the constant ratio, SA
being less than AX. A is a point on the curve called the

vertex.

As in para. 17, Chap. X, find A’ in X8 produced such that
SA' A’X 1 BA 1 AX,
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Then A’is another point on the curve, being a second vertem.

Double the line AA’ and obtain its middle point C called
the centre, and mark S’ and X' corresponding to S and X.
Fold through X' such that FX' may be at right angles to XX'.
Then 8'is the second focus and FX' the second directriw.

In doubling AA’, obtain the perpendicular through C.
SA:AX 1 SA':AX
1 SA+SA' AX + AX
i AA XX
2 CA: CX
Take points B and B’ in the perpendicular through C and on

opposite sides of it, such that SB and SB’ are each equal to
CA. Then B and B’ are points on the curve.

AA'is called the mujor awts, and BB’ the minor azis.
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2. To find other points on the curve, take any point K in the
directriz, and fold through it and A and A'. TFold again
through BS and mark the point P where SA' cats EA produced.
¥old through PS and P’ on EA:. Then P and P’ are points on
the curve. »

Fold through P and P’ such that KPL and K'L'P’ are per-
pendicular to the directrix, K and K' being on the directrix and
L and L/ on ES.

SL bisects the angle A'SP,

1e, £PSL= £ PLS and SP=PL.

SP:PK :: PL:PK
i SA D AXL
And
SP:P'K'::P'L/:P'K/
1 SATAX
11SAAX.

If BEX=8X, SP is at right angles to SX, and SP=8P'. PP’
is the Latus Rectum. )

3. When a number of points on the left half of the curve
- are found, corresponding poiuts on the other half can be marked
by doubling the paper on the minor axis and pricking through
them. '

4. An ellipse may also be defined as follows :

If a point P move in such a manner that PN?:AN. NA' in a
constant ratio, PN being the distance of P from the line joining
two fixed points A, A’, and N being between A and A/, the locus
of P is an ellipse of which AA'is an axis.

5. In the circle, PN?=AN.NA'.

In the ellipse PN2: AN.NA' ig in a constant ratio.

This ratio may be less or greater than unity. In the former
case £ APA' is obtuse, and the curve lies within the auxiliary
circle described on AA" as diameter. In the latter case, £ APA’
is acute and the curve is outside the cirgle. In the first case
AA'"is the major, and in the second it is the minor axis.
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6. The above definition corresponds to the equation
‘ b? :
Y= (200—a?)
when the vertex is the origin.

7. AN. NA' is equal to the square on.the ordinate of the
auxiliary circle, QN, and PN:QN :: BC:AC.

8. The subjoined diagram shows how the points can be
determined when the constant ratio is less than unity. The
same process is applicable when the ratio is greater than unity.
When points in one quadrant are found, corresponding pointsin
other quadrants can be easily marked.

W
NA! ‘

N

!

\

\

9. If P and P’ are conjugate points on an ellipse and the
ordinates MP and M'P’ meet the aunxiliary circle in Q and Q/,
the angle QCQ' is a right angle.
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Now take a rectangular piece of card or paper and mark on
two adjacent edges beginning with the common corner lengths
equal to the minor and major axes. By turning the card
round C mark corresponding points on the outer and inner
auxiliary circles. Let Q, R and QR be the points in one
position. Fold the ordinates QM and Q'M’, and RP and R'P’
perpendiculars to the ordinates. Then P and P’ are points
on the curve.

10. Points on the curve may also be easily determined by
the application of the following property of the Conic Sections.

The focal distance of a point on a conic is equal to the

length of the ordinate produnced to meet the tangent at the end
of the latus rectum.
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11, Let A and A’ be any two points. Join AA' and
produce the line both ways. From any point D in A'A pro-
duced draw DR perpendicular to AD. Take any point R in
DR and join RA and RA'. TFold AP perpendicular to AR,
meeting RA’ in P.- For different positions of R in DR, the
locus of P is an ellipse, of which AA’is the major axis.

Fold PN perpendicular to AA'.
Now, because PN is parallel to RD,
PN:A'N::RD:AD
again, from the triangles, APN and DAR,
PN :AN :: AD: RD

PN?: AN. A'N :: AD : A'D, a constant ratio, less than

unity, and it is evident from the construction that N must lie
between A and A'.

SeerioNn IV.—TaE HYPERBOLA.

1. An hyperbola is the curve traced by a point which
moves in one plane in such a manner that its distance from a

given point is in a constant ratio of greater inequality to its
distance from a given straight line.

2. The construction is the same as for the Hllipse, but the
position of the parts is different. As explained in Art. 20,
Chap. X, A lies on the left side of the directrix. Bach directrix
lies between A and A', and the foci lie without these points.

The curve consists of two branches which are open on one side.
9
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The two branches lie entirely within two alternate angles
formed by two straight lines passing through the centre which
are called the asymptotes. These are tangents to the curve at
infinity.

3. The hyperbola can be defined thus: If a point P move
in such a manner that PN?: AN. NA’ in a constant ratio, PN
being the distance of P from the line joining two fixed points
A and A’, and N not being between A and A', the locus of P is
an hyperbola, of which AA’ is the transverse axis.

This corresponds to the equation
2

Yy = b—j (2aw+a?).
(22

The annexed figure shows how points on the curve may be
found by the application of this formula.

In the above figure

CD=CA
SD=SE=AL=BC
Take SH=AS.

and SE?=A'S.SH=A'S.AS.
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Fold through EA’ cutting CX in F.
Fold through B'F cutting SE in R.
Then SR:SE::B'C:A'C

::BC:AC.
~.R is a point on the curve.
SE being perpendicular to AS
SR is the semi-latus rectum.

The same process can be followed in respect of any other
ordinate.

4, The hyperbola can also be described by the property
referred to in Art. 10, Ellipse.

5. An hyperbola is said to be equilateral when the trans-
verse and conjugate axes are equal. Here a=b, and the equa-
tion becomes

y?=(20+»)w.
In this case the construction is simpler as the ordinate of
the hyperbola is itself the mean between AN and A'N, and is

therefore equal to the tangent from N to the ecircle described
on AA' ag diameter.

6. The polar equation to the
rectangular hyperbola, when the
centre is the origin and one of
the axes the initial line, is

r? cos 20=¢?

5 a
or 99 = .
cos 26

Let CA, CB be the axes ; divide
the right angle ACB into a number
of equal parts. Let ACD, DCE
be two of the equal angles. Fold
AR at right angles to CA. Produce
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EC and take CF=CA. Fold CG perpendicular to EF and find
G in CG such that EGF is a right angle. Take CD = CG.
Then D is a point on the curve.

. . a
Now, the angles ACD and DCE being 6, CE= T
And CD?=0@?=CE.CF = —2_ _q.
cos 20

s r2cos 20=qa?.

7. The points of trisection of a series of conterminous circular
arcs'lie on branches of two hyperbolas of which the eccentri-
city is 2. This theorem affords a means of trisecting an angle.



CHAPTER XIV.

MISCELLANEOUS CURVES.

1. I propose in this,
the last chapter, to give
hints for tracing certain
well-known curves.

Tae Crssoip.

9, This word means
ivy-shaped curve. It is
defined as follows: Let
OQA be a semicircle on
the fixed diameter OA,
and let QM, RN be two
ordinates of the semicircle
equidistant from the cen-

tre. Join OR cutting
QM in P. Then the locus of P is the cissoid.

If OA = 2a, the equation to the curve is y2(2a—n)=w5.
Now, let PR cut the perpendicular from C in D and join AP
cutting OD in E.
RN:CD::ON:0C:: AM:AC::PM:CE
S~ RN:PM::CD:CE
But RN:PM:: ON:OM:: ON:AN:: ON2:NR? :: 0C?:CD?
s CD:CE::0C2:CD?
If CF be the mean between CD and CE
CD:CF::0C:CD
5~ 0C:CD::CD:CF::CF:CE
- 0D and CF are the two geometrical means between OC
and CE.

3. The cissoid was invented by Diocles (seeond century B.C.)
to find two geometrical means between two lines in the manner



102 THE CONCHOID OR MUSSEL-SHAPED CURVE.  [CHAP

described above. OC and CE being given, the point P was
determined by the aid of the curve, and hence the point D.

4, If PD and DR are each equal to OQ, then the angle
AOQ is trisected by OP.

Join QR. Then QR is parallel to OA, and

DQ=DP=DR=0Q
S 2QOR=,/QD0=22QRO=22A0R.
Tar Coxcuord ok MuUssEL-sHAPED CURVE.

5., This curve was invented

=

e

by Nicomedes (second century
B.C.) If through any fixed
point A, a straight line be drawn
cutting a fixed straight line in
R, and RP and RP’ be taken
of the same constant length on
each side of the fixed straight
line, then the locus of P and P’
) is the Conchoid.

The curve differs in shape
according as the constant length
RP is equal to, greater than, or
less than the distance of the
fixed point from the fixed
/ straight line. :

The above figure shows the
shapes of the curve in the last
two cases. The loop occurs when RP is greater than AB.
‘When RP=AB, A is a cusp on the curve. The curves consist
of two branches with the fixed line LM for a common asymptote.

6. This curve was also proposed for finding two geometrical
means, and the trisection of an angle.

Let OA be the longer of the two lines of which two geometri-
cal means are required.
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Bisect OA in B; with O as
centre and OB as radius de-
scribe a circle. Place a chord
BC in the circle equal to the
shorter of the given lines. Join
AC and produce AC and BC to
D and E. Suppose that D and
B are so situated that they are
ina line with O and DE=0OB
or OA.

&

Then OD and CE are the two mean proportionals required.
Let OE cut the circles in F and G.

By transversals,

BC.ED.OA=CE.OD.BA
~BC.OA=CE.OD
o BC_ 0D
CE~ 0OA
. BE_0D+0A GE
"CET 0A T O0A°
But GE.EF=BE.EC.
~GE.OD=BE.EC.
S~ OA.OD=EC.
5 OA:CE :: CE:OD :: OD: BC.
The position of E is found by the aid of the conchoid of
which AD is the asymptote, O the focus, and DE the constant
intercept.

7. The trisection of an angle is thus effected.

In the figure for the cissoid, if OA be taken for the axis
of the conchoid and QM for the asymptote and 20Q for the
constant intercept, the curve cuts QR in R.
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Tae WrrcH.

8. If OQA be a semicircle
and NQ an ordinate of it, and NP
be taken a fourth proportional to
ON, OA and QN, then the locus
of P is the witch.

Fold AM at right angles to OA.

Told through O, Q and M.

Complete the rectangle NAMP.

PN:QN::0M:0Q

::0A:ON.

Therefore P is a point on the
curve.

Its equation is,

wy? = a® (a — ).

This curve was proposed by a lady, the Donna Agnesi, Pro-
fessor of Mathematics at Bologna.

Ture CuBicAL PARABOLA.

9. The equation to this
curve is a?y=aq3.

Let OX and OY be the
rectangular axes, OA=q,
and OX=uz.

Take OB in the axis
OY =w.

Join BA and draw AC
at right angles to AB
cutting the axis OY in C.

Join CX, and draw XY
at right angles to 0X.

Complete the rectangle
XO0Y.

Pis a point on the curve.
wwe
2

a w”
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Toe Harvoxic Curve or CURVE OF SINES.

This is the curve in which a musical string vibrates when
sounded. The ordinates are proportional to the sines of angles
which are the same fractions of four right angles as the corre
sponding abscissee are of some given length.

Let AB be the given length. Produce BA to C and fold AD
perpendicular to AB. Divide the right angle CAD into a
number of equal parts, say, four. Mark on each radius a
length equal to the amplitude of the vibration, AC, Al, A2,
A3, AD.

From points 1, 2, 3 fold perpendiculars to AC; then lm,,
2m,, and 3m,; and DA are proportional to the sines of the
angles CAl, CA2, CA3 and CAD.

Now, bisect AB in E and divide AE and EB into twice the
number of equal parts chosen for the right angle. Draw the
successive ordinates la, 2b, 3¢, 4d, &c., equal to lmy, 2my, 3mg,
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4my, &e. Then a, b, ¢, d are points on the curve, d is the
highest point on it. By folding on 4d and pricking through
a, b, ¢, d, we get corresponding points on the portion of the
curve dB. The portion of the curve corresponding to EB is
equal to AdE but lies on the opposite side of AB. The length
from A to K is half a wave length, which will be repeated from
I to B on the other side of AB. E is a point of inflection on the
curve, the radius of curvature there becoming infinite.

Tae Ovats or CASSINI.

10. When a point moves in a plane so that the product of
its distances from two fixed points in the plane is constant, it
traces out one of Cassini’s ovals. The fixed points are called
the foci. The equation of the curve is 7' = %?, when # and +'
are the distances of any point on the curve from the foci and
k is a constant.

Let F and ¥’ be the foci. Fold through F, and F'. Bisect
FF'in C, and fold BCB' perpendicular to FF.! Find points
B and B’ such that FB and ¥FB' are each = k. Then B and B’
are evidently points on the curve.

Fold FK perpendicular to FF' and make FK=Fk, and on FF'
take CA and CA’ eachequal to CK. Then A and A’ are points
on the curve.

For CA2=CK®%= CF? + FK?

o CA?—CP?=K? = (CA+CF)(CA-CF)

= F'A. FA.
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Produce FA and take AT = FK. In AT take a point d and

join dK. Told Kd' perpendicular to dK meeting F A’, in d'.
Then Fd. Fd' = k2.

With centre I and radius Fd, and with centre F’ and radius
Fd, describe two arcs cutting each other in P. Then P is a
point on the curve.

When a number of points between A and B are found,
corresponding points in the other quadrants can be marked by
paper folding.

When FF = v 2K and ' =3K? the curve assumes the form
of a Lemniscate. (Art. 17, Chap. XIV.)

When FF' is greater than ~2K, the curve consists of two
independent ovals, one about each focus.

' Tue Logariramic CURVE.

11, The equation to this curve is y=a®,

The ordinate at the origin is unity.

If the abcissa increases arithmetically, the ordinate increases
geometrically.

The values of y for integral values of @ can be obtained by
the process given in Art. 7, Chap. X.

The curve extends to infinity in the angular space XOY,

. ] » )

If # be negative y= —and approaches zero as = increases

numerically. The negative side of the axis OX is therefore
an asymptote to the enrve.

Trr CommoN CATENARY.

12. The Catenary is the form assnmed by a heavy inex-
tensible string freely suspended from two points and hanging
under the action of gravity.

The equation to the curve is
&T

y:% (65+e~;>

the axis of y being a vertical line through the lowest point of
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the curve, and the axis of @ a horizontal line in the plane of
the string at a distance ¢ below the lowest point ; ¢ is the length
of the string, and e the base of Napierian logarithms,

When e=¢, y= %(el+e—1)
. =2, y:% (e +¢e2) and so on.

13. From the equation
y=g(d+et)
e can be determined graphically.
ce— 2yv/e+c=0
Ve=Liy+ v=s)

eVe=y+ g
V¢ is found by taking the G.M. between y+c and y—e.

Tee Carp10ID OR HEART-sHAPED CURVE.

14, From a fixed
point, on acircle, draw a
number of chords and
take off on each of these
lines measured from the
circumference of the
circle a length equal to
the diameter of the
circle. The ends of these

lines lie on a Cardioid.

The equation to the curve is r=a(1+ cosf).

The origin is a cusp on the curve. The cardioid is the inverse
of the parabola with reference to its focus as centre of inversion.
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Tue Limacon.

15, From a fixed point
on a circle, draw a number
of chords, and take off a
constant length on each of
these lines measured from
the circumference of the
circle.

If the constant length
is equal to the diameter
of the circle, the curve is
a cardioid.

If it be greater than
the diameter, the curve is
altogether outside the
circle.

If it be less than the
diameter, a portion of the
curve lies inside the circle
in the form of a loop.

If the constant length is
exactly half the diameter,
the curve is called the
Trisectrix, as by its aid
any angle can be trisected.

The équa,tion is r=A cos 6+ B.

The first sort of Limagon is the inverse of an ellipse; and
the second sort is the inverse of an hyperbola, with reference to
a focus as centre. The loop is the inverse of the branch about
the other focus.
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16. The trisectrix is applied as follows : -

Let AOB be the given angle. Take OA, OB equal to the
radius of the circle. Describe a
circle with centre O and radius OA
or OB. Produce BO indefinitely
beyond the circle. Apply the tri-
sectrix so that O may correspond to
the centre of the circle and OA to
the axis of the loop. Let the outer

curve cut BO produced in C. Join AC cutting the circle in D.
Join OD.

Then £ ACOis i of £ AOB.
Now CD= DO=0B

s £AOB= £ ACO+ <« CAO

= £ ACO+ <2 ADO

2 ACO+2 ¢ ACO
3 2 ACO.

i

Tae LEMNISCATE OF BERNOULLI

17. The polar equation to the curve is
r?=qa? Cos 20.
Let O be the origin, and OA=a.
Produce AQ, and draw OD at right angles to OA.
Take the angle AOP=0 and AOB=26.
Draw AB perpendicular to OB.
In AO produced take OC=0B.
Find D in OD such that CDA is a right angle.
Take OP=0D.
P is a point on the curve
7?=0D?=0C.0A

=0B.0A

=a Cos 260.a

=a? Cos 26.
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As stated above, this curve is a particular case of the ovals
of Cassini.

It is the inverse of the Rectangular hyperbola, with reference
to its centre as centre of inversion, and also its pedal with
respect to the centre.

The area of the curve is @

Tue Cryoroip.

18. The cycloid is the path described by a point on the
circumference of a circle which is supposed to roll upon a fixed
straight line.

Let A and A’ be the positions of the generating point when
in contact with the fixed line after one complete revolution of
the circle. Then AA' is equal to the circumference of the
circle.
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